2018-2019学年四川省成都市金牛区八年级(上)期末数学试卷_第1页
2018-2019学年四川省成都市金牛区八年级(上)期末数学试卷_第2页
2018-2019学年四川省成都市金牛区八年级(上)期末数学试卷_第3页
2018-2019学年四川省成都市金牛区八年级(上)期末数学试卷_第4页
2018-2019学年四川省成都市金牛区八年级(上)期末数学试卷_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2018-2019学年四川省成都市金牛区八年级(上)期末数学试卷学校:___________姓名:___________班级:___________考号:___________题号一二三四总分得分注意:本试卷包含Ⅰ、Ⅱ两卷。第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。答案写在试卷上均无效,不予记分。一、选择题1、9的算术平方根是()A.±3 B.-3 C.3 D.±81 2、在平面直角坐标系中,点P(2,-3)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限 3、以下列三个数据为三角形的三边,其中能构成直角三角形的是()A.2,3,4 B.4,5,6 C.5,12,13 D.5,6,7 4、已知a,b,c均为实数,若a>b,c≠0.下列结论不一定正确的是()A.a+c>b+c B.a2>abC. D.c-a<c-b 5、对于函数y=-2x+1,下列结论正确的是()A.它的图象必经过点(-1,3)B.它的图象经过第一、二、三象限C.当时,y>0D.y值随x值的增大而增大 6、已知是方程组的解,则a+b=()A.2 B.-2 C.4 D.-4 7、若x=-4,则x的取值范围是()A.2<x<3 B.3<x<4 C.4<x<5 D.5<x<6 8、下面四条直线,可能是一次函数y=kx-k(k≠0)的图象是()A. B.C. D. 9、下列命题是真命题的是()A.中位数就是一组数据中最中间的一个数B.计算两组数的方差,所S甲2=0.39,S乙2=0.25,则甲组数据比乙组数据波动小C.一组数据的众数可以不唯一D.一组数据的标准差就是这组数据的方差的平方根 10、在Rt△ABC中,∠ACB=90°,AB=10cm,AB边上的高为4cm,则Rt△ABC的周长为()cm.A.24 B.C. D. 二、填空题1、的相反数是______,8的立方根是______.2、若点P(-1,a)、Q(2,b)在一次函数y=-3x+4图象上,则a与b的大小关系是______.3、如图所示的圆柱体中底面圆的半径是,高为3,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是______.(结果保留根号)4、如图,已知函数y=ax+b和y=cx+d的图象交于点M,则根据图象可知,关于x,y的二元一次方程组的解为______.三、解答题1、计算下列各题(1)(2)______四、计算题1、计算题(1)解方程组:(2)解不等式组(并把解集在数轴上表示出来)______2、已知;如图,在四边形ABCD中,AB∥CD,∠BAD,∠ADC的平分线AE、DF分别与线段BC相交于点E、F,AE与DF相交于点G,求证:AE⊥DF.______3、某中学10月份召了校运动会,需要购买奖品进行表彰,学校工作人员到某商场标价购买了甲种商品25件,乙种商品26件,共花费了2800元;回学校后发现少买了2件甲商品和1件乙种商品,于是马上到该商场花了170元把少买的商品买回.(1)分别求出甲、乙两种商品的标价.(2)若元旦前,学校准备为全校教职工购买甲、乙两种商品作为慰问品,需要购买甲、乙两种商品共200件,请求出总费用w(元)与甲种商品a(件)之间的函数关系式(不需要求出自变量取值范围)______4、为了提高学生阅读能力,我区某校倡议八年级学生利用双休日加强课外阅读,为了解同学们阅读的情况,学校随机抽查了部分同学周末阅读时间,并且得到数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;被调查的学生周末阅读时间众数是______小时,中位数是______小时;(2)计算被调查学生阅读时间的平均数;(3)该校八年级共有500人,试估计周末阅读时间不低于1.5小时的人数.______5、如图,已知直线AB:y=-x+4与直线AC交于点A,与x轴交于点B,且直线AC过点C(-2,0)和点D(0,1),连接BD.(1)求直线AC的解析式;(2)求交点A的坐标,并求出△ABD的面积;(3)在x轴上是否存在一点P,使得AP+PD的值最小?若存在,求出点P;若不存在,请说明理由.______6、函数中,自变量x的取值范围是______.7、将一张长方形纸片按图中方式折叠,若∠2=65°,则∠1的度数为______.8、若x=-1,则x3+x2-3x+2019的值为______.9、如图,在平面直角坐标系中,直线y=-x+6分别与x轴,y轴交于点B,C且与直线y=x交于点A,点D是直线OA上的点,当△ACD为直角三角形时,则点D的坐标为______.10、把自然数按如图的次序在直角坐标系中,每个点坐标就对应着一个自然数,例如点(0,0)对应的自然数是1,点(1,2)对应的自然数是14,那么点(1,4)对应的自然数是______;点(n,n)对应的自然数是______11、已知A,B两地相距120km,甲,乙两人分别从两地出发相向而行,甲先出发,中途加油休息一段时间,然后以原来的速度继续前进,两人离A地的距离y(km)与甲出发时间x(h)的关系式如图所示,请结合图象解答下列问题:(1)甲行驶过程中的速度是______km/h,途中休息的时间为______h.(2)求甲加油后y与x的函数关系式,并写出自变量x的取值范围;(3)甲出发多少小时两人恰好相距10km?______12、已知△ABC是等边三角形,点D是直线AB上一点,延长CB到点E,使BE=AD,连接DE,DC,(1)若点D在线段AB上,且AB=6,AD=2(如图①),求证:DE=DC;并求出此时CD的长;(2)若点D在线段AB的延长线上,(如图②),此时是否仍有DE=DC?请证明你的结论;(3)在(2)的条件下,连接AE,若,求CD:AE的值.______13、如图,已知长方形OABC的顶点O在坐标原点,A、C分别在x、y轴的正半轴上,顶点B(8,6),直线y=-x+b经过点A交BC于D、交y轴于点M,点P是AD的中点,直线OP交AB于点E(1)求点D的坐标及直线OP的解析式;(2)求△ODP的面积,并在直线AD上找一点N,使△AEN的面积等于△ODP的面积,请求出点N的坐标(3)在x轴上有一点T(t,0)(5<t<8),过点T作x轴的垂线,分别交直线OE、AD于点F、G,在线段AE上是否存在一点Q,使得△FGQ为等腰直角三角形,若存在,请求出点Q的坐标及相应的t的值;若不存在,请说明理由______

2018-2019学年四川省成都市金牛区八年级(上)期末数学试卷参考答案一、选择题第1题参考答案:C解:∵32=9,∴9算术平方根为3.故选:C.如果一个非负数x的平方等于a,那么x是a的算术平方根,根据此定义即可求出结果.此题主要考查了算术平方根,其中算术平方根的概念易与平方根的概念混淆而导致错误.---------------------------------------------------------------------第2题参考答案:D解:点P(2,-3)在第四象限.故选:D.根据各象限内点的坐标特征解答.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).---------------------------------------------------------------------第3题参考答案:C解:A、22+32≠42,故不能构成直角三角形;B、42+52≠62,故不能构成直角三角形;C、52+122=132,故能构成直角三角形;D、52+62≠72,故不能构成直角三角形.故选:C.欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.---------------------------------------------------------------------第4题参考答案:B解:∵a>b,c≠0,∴-a<-b,∴a+c>b+c,故A选项正确;,故C选项正确;c-a<c-b,故D选项正确;又∵a的符号不确定,∴a2>ab不一定成立,故选:B.依据不等式的基本性质进行判断,即可得到答案.本题主要考查了不等式的性质,在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.---------------------------------------------------------------------第5题参考答案:A解:当x=-1时,y=3,故A选项正确,∵函数y=2x+1图象经过第一、二、四象限,y随x的增大而减小,∴B、D选项错误,∵y>0,∴-2x+1>0∴x<∴C选项错误,故选:A.根据一次函数图象上点的坐标特征和一次函数的性质依次判断,可得解.本题考查了一次函数图象上点的坐标特征,一次函数性质,熟练掌握一次函数的性质是本题的关键.---------------------------------------------------------------------第6题参考答案:B解:∵是方程组的解∴将代入①,得a+2=-1,∴a=-3.把代入②,得2-2b=0,∴b=1.∴a+b=-3+1=-2.故选:B.将代入方程组中的两个方程,得到两个关于未知系数的一元一次方程,解答即可.解答此题,需要对以下问题有一个深刻的认识:①使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解;②二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.---------------------------------------------------------------------第7题参考答案:A解:∵36<37<49,∴6<<7,∴2<-4<3,故x的取值范围是2<x<3.故选:A.由于36<37<49,则有6<<7,即可得到x的取值范围.本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.---------------------------------------------------------------------第8题参考答案:D解:∵一次函数y=kx-k(k≠0),∴当k>0时,函数图象在第一、三、四象限,故选项A错误,选项D正确,当k<0时,函数图象在第一、二、四象限,故选项C、D错误,故选:D.根据一次函数的性质,利用分类讨论的方法可以判断哪个选项中的图象符合要求,本题得以解决.本题考查一次函数的图象,解答本题的关键是明确题意,利用一次函数的图象解答.---------------------------------------------------------------------第9题参考答案:C解:A、中位数就是一组数据中最中间的一个数或着是中间两个数的平均数,故错误;B、计算两组数的方差,所S甲2=0.39,S乙2=0.25,则甲组数据比乙组数据波动大;故错误;C、一组数据的众数可以不唯一,故正确;D、一组数据的标准差就是这组数据的方差的算术平方根,故错误;故选:C.直接利用方差的意义以及众数的定义和中位数的意义分别分析得出答案.此题主要考查了中位数的意义以及众数和方差,正确把握相关定义是解题关键.---------------------------------------------------------------------第10题参考答案:D解:由勾股定理得,AC2+BC2=AB2=100,由三角形的面积公式可知,•AC•BC=•AB•CD=20,∴2•AC•BC=80则(AC+BC)2=AC2+BC2+2•AC•BC=180,解得,AC+BC=6,∴Rt△ABC的周长=AC+BC+AB=6+10,故选:D.根据勾股定理、三角形的面积公式求出AC2+BC2和2•AC•BC,根据完全平方公式求出AC+BC,根据三角形的周长公式计算即可.本题考查的是勾股定理的应用,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.二、填空题---------------------------------------------------------------------第1题参考答案:

2

;解:-的相反数是:;8的立方根是:2.故答案为:;2.直接利用相反数以及立方根的性质计算得出答案.此题主要考查了相反数的性质以及立方根,正确把握相关性质是解题关键.---------------------------------------------------------------------第2题参考答案:a>b解:∵点P(-1,a)、Q(2,b)在一次函数y=-3x+4图象上,∴a=3+4=7,b=-6+4=-2,∴a>b故答案为:a>b.将点P,点Q坐标代入解析式可求a,b值,即可比较a,b的大小关系.本题考查了一次函数图象上点的坐标特征,牢记函数图象上的点的坐标满足函数图象的解析式.---------------------------------------------------------------------第3题参考答案:解:圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,C是边的中点,矩形的宽即高等于圆柱的母线长.∵AB=π•=2,CB=3.∴AC=.故答案为:先将图形展开,再根据两点之间线段最短,由勾股定理可得出.此题主要考查了平面展开图最短路径问题,此矩形的长等于圆柱底面周长,矩形的宽即高等于圆柱的母线长.本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.---------------------------------------------------------------------第4题参考答案:解:由图可知:直线y=ax+b和直线y=cx+d的交点坐标为(-2,3);因此方程组的解为:.一次函数y=ax+b和y=cx+d交于点(-2,3);因此点(-2,3)坐标,必为两函数解析式所组方程组的解.方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.三、解答题---------------------------------------------------------------------第1题参考答案:解:(1)=2-3+=-3;(2)=-(3-)÷+-=-3++-=-3+2.(1)直接利用算术平方根以及立方根的性质分别化简得出答案;(2)直接利用二次根式的性质分别化简得出答案.此题主要考查了实数运算,正确化简二次根式是解题关键.四、计算题---------------------------------------------------------------------第1题参考答案:解:(1),②×2得:8x+2y=20③,①+③,得:11x=33,解得x=3,将x=3代入②,得:12+y=10,解得y=-2,所以方程组的解为;(2)解不等式4x-12≥5x-10,得:x≤-2,解不等式2(2x-3)-3(x+1)≥-12,得:x≥-3,则不等式组的解集为-3≤x≤-2,将不等式组的解集表示在数轴上如下:(1)利用加减消元法求解可得;(2)首先分别解出两个不等式的解集,再根据“大小小大中间找”确定不等式组的解集即可.此题主要考查了二元一次方程组,一元一次不等式(组)的解法,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.---------------------------------------------------------------------第2题参考答案:证明:∵AB∥DC,∴∠BAD+∠ADC=180°.∵AE,DF分别是∠BAD,∠ADC的平分线,∴∠DAE=∠BAE=∠BAD,∠ADF=∠CDF=∠ADC.∴∠DAE+∠ADF=∠BAD+∠ADC=90°.∴∠AGD=90°.∴AE⊥DF.根据平行线的性质得到∠BAD+∠ADC=180°;然后根据角平分线的定义,推知∠DAE+∠ADF=90°,即可得到∠AGD=90°.本题考查了平行线的性质以及角平分线的定义的运用.解题时注意:两直线平行,同旁内角互补.---------------------------------------------------------------------第3题参考答案:解:(1)设甲种商品的标价为每件x元,则乙种商品的标价为每件(170-2x)元,根据题意得,25x+26(170-2x)=2800,解得x=60,则170-2×60=50.答:甲种商品的标价为每件60元,乙种商品的标价为每件50元;(2)由题意,可得w=60a+50(200-a),化简得,w=10a+10000.(1)设甲种商品的标价为每件x元,根据买2件甲商品和1件乙种商品花了170元,可得乙种商品的标价为每件(170-2x)元,再根据买了甲种商品25件,乙种商品26件,共花费了2800元列出方程,求解即可;(2)根据总费用=甲种商品的单价×甲种商品的数量+乙种商品的单价×乙种商品的数量列式即可.本题考查了一次函数的应用,一元一次方程的应用,总价=单价×数量关系的应用,正确求出甲、乙两种商品的单价是解题的关键.---------------------------------------------------------------------第4题参考答案:1.5

1.5

解:(1)由题意可得,本次调查的学生数为:30÷30%=100,阅读时间1.5小时的学生数为:100-12-30-18=40,补全的条形统计图如图所示,由补全的条形统计图可知,抽查的学生劳动时间的众数是1.5小时,中位数是1.5小时,故答案为:1.5,1.5;(2)所有被调查同学的平均劳动时间为:×(12×0.5+30×1+40×1.5+18×2)=1.32小时,即所有被调查同学的平均劳动时间为1.32小时.(3)估计周末阅读时间不低于1.5小时的人数为500×=290(人).(1)根据统计图可以求得本次调查的学生数,从而可以求得劳动时间1.5小时的学生数,进而可以已将条形统计图补充完整;由补全的条形统计图可以得到抽查的学生劳动时间的众数、中位数.(2)根据补全的条形统计图可以求得所有被调查同学的平均劳动时间.(3)用总人数乘以样本中周末阅读时间不低于1.5小时的人数占总人数的比例即可得.本题考查条形统计图、扇形统计图、加权平均数、中位数、众数,解题的关键是明确题意,利用数形结合的思想解答问题.---------------------------------------------------------------------第5题参考答案:解:(1)设直线AC解析式为:y=kx+b,根据题意得:∴k=,b=1∴直线AC解析式为:y=x+1(2)根据题意得:解得:∴点A坐标为(2,2)如图,设直线AB与y轴交点为E,∵直线AB与x轴交于点B,与y轴交于点E,∴点B(4,0),点E(0,4)∴OB=4,OE=4,∵DO=1,∴DE=3,∵S△ADB=S△BEO-S△ADE-S△BDO,∴S△ADB==3,(3)如图,作点D(0,1)关于x轴的对称点D'(0,-1),∵AP+DP=AP+PD',∴当点P在AD'上时,AP+DP的值最小,连接AD'交x轴于点P,设直线AD'的解析式为:y=mx+n,根据题意得:解得:∴直线AD'的解析式为:y=x-1当y=0时,x=∴点P坐标为(,0)(1)利用待定系数法求AC解析式;(2)将直线AB,AC解析式组成方程组,可求点A坐标,根据S△ADB=S△BEO-S△ADE-S△BDO,可求△ABD的面积;(3)作点D(0,1)关于x轴的对称点D'(0,-1),先求出直线AD'的解析式,即可求直线AD'与x轴的交点P的坐标.本题是一次函数综合题,考查了用待定系数法求出一次函数的解析式,解方程组,最短路径等知识点,利用数形结合思想解决问题是本题的关键.---------------------------------------------------------------------第6题参考答案:x≥-3且x≠1解:根据题意得:x+3≥0且x-1≠0,解得:x≥-3且x≠1.根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,可知:x+3≥且x-1≠0,解得自变量x的取值范围.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.---------------------------------------------------------------------第7题参考答案:50°解:如图,延长CD至G,∵AB∥CD,∴∠2=∠BDG=65°,由折叠可得,∠BDE=∠BDG=65°,∴△BDE中,∠BED=180°-65°×2=50°,∴∠1=∠BED=50°,故答案为:50°.由平行线的性质以及折叠的性质,可得∠2=∠BDE=65°,再根据三角形内角和定理以及对顶角的性质,即可得到∠1的度数.本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.---------------------------------------------------------------------第8题参考答案:2018解:∵x=-1,∴x2=(-1)2=2-2+1=3-2,则原式=x•x2+x2-3x+2019=(-1)×(3-2)+3-2-3(-1)+2019=3-4-3+2+3-2-3+3+2019=2018,故答案为:2018.先根据x的值计算出x2的值,再代入原式=x•x2+x2-3x+2019,根据二次根式的混合运算顺序和运算法则计算可得.本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.---------------------------------------------------------------------第9题参考答案:D(,)或(-4,-2)解:(1)直线y=-x+6,当x=0时,y=6,当y=0时,x=12,则B(12,0),C(0,6),解方程组:得:,则A(6,3),故A(6,3),B(12,0),C(0,6),∵△ACD为直角三角形,∴①当∠ADC=90°,∴CD⊥OA,∴设直线CD的解析式为:y=-2x+b,把C(0,6)代入得,b=6,∴直线CD的解析式为:y=-2x+6,解得,∴D(,),②当∠ACD=90°,∴DC⊥BC,∴设直线CD的解析式为:y=2x+a,把C(0,6)代入得,a=6,∴直线CD的解析式为:y=2x+6,解得,,∴D(-4,-2),综上所述:D(,)或(-4,-2).故答案为:D(,)或(-4,-2).解方程或方程组得到A(6,3),B(12,0),C(0,6),①当∠ADC=90°,得到CD⊥OA,设直线CD的解析式为:y=-2x+b,求得直线CD的解析式为:y=-2x+6,解方程组得到D(,),②当∠ACD=90°,得到DC⊥BC,设直线CD的解析式为:y=2x+a,把C(0,6)代入得,a=6,求得直线CD的解析式为:y=2x+6,解方程组得到D(-4,-2).本题考查了两条直线相交或平行问题,直角三角形的性质,待定系数法求函数的解析式,正确的理解题意是解题的关键.---------------------------------------------------------------------第10题参考答案:60

4n2-2n+1

;解:观察图的结构,发现这些数是围成多层正方形,从内到外每条边数依次+2,所有正方形内自然数个数即(每边自然数个数的平方数)都在第四象限的角平分线上(正方形右下角).其规律为(n,-n)表示的数为(2n+1)2,而且每条边上有2n+1个数,点(1,4)在第四层正方形边上,该层每边有2×4+1=9个数,右下角(4,-4)表示的数是81,所以点(1,4)表示的是第四层从左下角开始顺时针(从81倒数)第21个数,即为81-8-8-5=60,点(n,-n)在第n层正方形边上,该层每边有2n+1个数,右下角(n,-n)表示的数是(2n+1)2,点(n,n)是正方形右上角的数,是从左下角开始顺时针(从(2n+1)2倒数)第6n个数,即为(2n+1)2-6n=4n2-2n+1.故答案为:60,4n2-2n+1.观察图的结构,发现这些数是围成多层正方形,所有奇数的平方数都在第四象限的角平分线上.依此先确定(n,n)坐标的数,再根据图的结构求得坐标(n,n).本题考查了点的坐标,找到所有奇数的平方数所在位置是解题的关键.---------------------------------------------------------------------第11题参考答案:60

0.5

解:(1)根据甲的图象可知前1小时走了120-60千米,故甲的速度为60km/h;甲走120千米需要2小时,而他到达终点的时间是2.5小时,故休息了0.5h.故答案为:60;0.5.(2)设甲加油后y=kx+b,将(1.5,60)和(2.5,0)代入解析式,,解得.故y=-60x+150(1.5≤x≤2.5).(3)设乙路程y1=k1x+b,将(1,0)和(4,120)代入,解得.故y1=40x-40.当x=1.5时,y1=40×1.5-40=20,此时两车相距60-20=40千米.故相距10km时间段为1.5h~2.5小时之间.依题意得,|(-60x+150)-(40x-40)|=10解得,x=1.8或2故甲出发1.8小时或2小时两车相距10km.(1)由图象可知,甲在前1小时走了60千米,计算速度即可;由于甲的速度未改变,故走完全程不休息需要2小时,而图象可知用了2.5小时,相减即可求出休息时间;(2)设甲加油后y=kx+b,将图象上两点(1.5,60)和(2.5,0)代入即可求出解析式;(3)先算出乙路程y1和x的关系式,再根据|y-y1|=10列出方程计算即可.本题考查了一次函数的应用,根据图象找出图上点,由待定系数法求出解析式是解题关键.---------------------------------------------------------------------第12题参考答案:解:(1)过点D作DF∥BC交AC于点F,作DM⊥BC于点M,∵△ABC是等边三角形∴∠ABC=∠ACB=∠A=60°,AB=AC=BC=6,∴∠DBE=120°∵DF∥BC∴∠ADF=∠ABC=60°,∠AFD=∠ACB=60°∴△ADF是等边三角形,∠DFC=120°∴AD=AF=DF=2,∴BD=AB-AD=4=AC-AF=CF∵BE=AD=DF=2,∠DBE=∠DFC=120°,CF=DB∴△DBE≌△CFD(SAS)∴DE=DC又∵DM⊥BC∴CM=EM=EC=(BE+BC)=4∵在Rt△DBM中,BD=4,∠DBM=60°∴BM=2,DM=BM=2∴CD==2(2)DE=DC理由如下:过点D作DF∥BC交AC的延长线于点F,∵BC∥DF∴∠ABC=∠ADF=60°,∠ACB=∠AFD=60°,∴△ADF是等边三角形,∴AD=DF=AC,∴AD-AB=AF-AC∴BD=CF,且BE=AD=DF,∠EBD=∠ABC=60°=∠AFD∴△EBD≌△DFC(SAS)∴DE=CD(3)如图,过点C作CH⊥AB于点H,过点A作AN⊥BC于点N,∵∴设AB=2x,AD=3x,∴BC=AC=2x,DF=BE=3x,BD=AD-AB=x,∵△ABC是等边三角形,AN⊥BC,CH⊥AB∴BN=BH=x,AN=x=CH在Rt△DHC中,DC==x,在Rt△AEN中,AE==x∴CD:AE==(1)过点D作DF∥BC交AC于点F,作DM⊥BC于点M,由题意可证△ADF是等边三角形,可得AD=AF=DF=2=BE,可得∠DBE=∠DFC=120°,CF=DB=4,可证△DBE≌△CFD,可得DE=CD,由勾股定理可求CD的长;(2)过点D作DF∥BC交AC的延长线于点F,由题意可证△ADF是等边三角形,可得AD=DF=AC,由“SAS”可证△EBD≌△DFC,可得DE=DC;(3)过点C作CH⊥AB于点H,过点A作AN⊥BC于点N,设AB=2x,AD=3x,由等边三角形的性质可得BC=AC=2x,DF=BE=3x,BD=AD-AB=x,BN=BH=x,AN=x=CH,由勾股定理可求CD,AE的长,即可求CD:AE的值.本题是三角形综合题,考查了等边三角形的性质,全等三角形判定和性质

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论