圆锥曲线专题(求离心率的值、离心率的取值范围)_第1页
圆锥曲线专题(求离心率的值、离心率的取值范围)_第2页
圆锥曲线专题(求离心率的值、离心率的取值范围)_第3页
圆锥曲线专题(求离心率的值、离心率的取值范围)_第4页
圆锥曲线专题(求离心率的值、离心率的取值范围)_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

...wd......wd......wd...圆锥曲线专题求离心率的值师生互动环节讲课内容:历年高考或模拟试题关于离心率的求值问题分类精析与方法归纳点拨。策略一:根据定义式求离心率的值在椭圆或双曲线中,如果能求出的值,可以直接代公式求离心率;如果不能得到的值,也可以通过整体法求离心率:椭圆中;双曲线中.所以只要求出值即可求离心率.例1.〔2010年全国卷2〕己知斜率为1的直线与双曲线:相交于两点,且的中点为,求曲线的离心率.解析:如图,设,则①②①-②整理得③又因为为的中点,则,且,代入③得,解得,所以.方法点拨:此题通过点差法建设了关于斜率与的关系,解得的值,从而整体代入求出离心率.当然此题还可以通过联立直线与曲线的方程,根据韦达定理可得,或者,从而解出的值,最后求得离心率.【同类题型强化训练】1.〔呼市二中模拟〕中心在原点,焦点在轴上的双曲线的渐近线方程为,则双曲线的离心率为〔〕.2.〔衡水中学模拟〕中心在原点,焦点在轴上的一椭圆与圆交于两点,恰是该圆的直径,且直线的斜率,求椭圆的离心率.3.〔母题〕双曲线,双曲线上一动点到两条渐近线的距离乘积为,求曲线的离心率.【强化训练答案】1.答案:由双曲线焦点在上,则渐近线方程,又题设条件中的渐近线方程为,比拟可得,则.2.答案:设椭圆方程为,,则①②①-②整理得③因为恰是该圆的直径,故的中点为圆心,且则,代入③式整理得直线的斜率,所以,解得所以离心率.3.答案:曲线的渐近线方程分别为和,设,则点到直线的距离,点到直线的距离,因为在曲线上,所以,故,解得所以.策略二:构造的关系式求离心率根据题设条件,借助之间的关系,沟通的关系〔特别是齐次式〕,进而得到关于的一元方程,从而解方程得出离心率.例2.是双曲线的两焦点,以线段为边作正三角形,假设边的中点在双曲线上,求双曲线的离心率.解析:如图1,的中点为,则点的横坐标为.由,焦半径公式有,即有解得,或〔舍去〕.方法点拨:此题根据条件构造关于的齐次式,通过齐次式结合离心率的定义整理成关于的一元方程,从而解出离心率的值.注意解出的结果要做验证,取符合离心率的范围的结果:.【同类题型强化训练】〔2011新课标〕直线过双曲线的一个焦点,且与的对称轴垂直,与交于、两点,为的实轴长的2倍,则的离心率为〔〕232.〔2008浙江〕假设双曲线的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是〔〕35【同类题型强化训练答案】1.答案:依据题意,解得.2.答案:依据题意,整理得,所以.策略三:根据圆锥曲线的统一定义求离心率〔第二定义〕由圆锥曲线的第二定义,知离心率是动点到焦点的距离和动点到准线的距离之比,适用于条件含有焦半径的圆锥曲线问题,即.例3.〔2010年辽宁卷〕设椭圆的左焦点为,过点的直线与椭圆相交于两点,直线的倾斜角为,,求椭圆的离心率.解法一:作椭圆的左准线,过作的垂线,垂足为;过作的垂线,垂足为.过作的垂线,垂足为.如图2.由图,由椭圆的第二定义,则,且,所以是的中点又因为直线的倾斜角为,即,所以在中,,故.解法二:设,由题意知,.直线的方程为,其中.联立得解得因为,所以.即得离心率.方法点拨:该题对于课标地区选择第二种代数法处理,对于自主命题对圆锥曲线的第二定义要求的地区,两种方法都可以给学生讲讲。对于方法一:需要清晰的思路,敏捷的思维,对计算要求不高;对于方法二:对学生的计算能力有较高的要求,重在计算。【同类题型强化训练】1.〔2010全国卷二〕椭圆的离心率为,过右焦点且斜率为的直线与相交于两点.假设,则〔〕12是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为.【强化训练答案】答案:设直线为椭圆的右准线,为离心率,过分别作,垂直于,为垂足,过作垂直于与,如图3所示,由椭圆第二定义,则,,由,得所以,,所以.应选.2.答案:方法一:如图4,,作轴于点,则由EMBEDEquation.DSMT4,得,所以,即,由椭圆的第二定义得又由,得,整理得.两边都除以,得,解得.方法二:设椭圆方程为:第一标准形式,分线段所成的比为2,,带入,.课时2、离心率的取值范围一、师生互动环节讲课内容:历年高考或模拟试题关于离心率的取值范围问题分类精析与方法归纳点拨。策略一:利用曲线中变量的范围求离心率的范围用曲线中变量的范围,在椭圆中,;在双曲线中中,或.例1.设椭圆的左、右焦点分别为,如果椭圆上存在点,使,求离心率的取值范围.解析:设,又知,则,因为,则,即所以联立方程,消,解得又因为,故,①解不等式①,结合椭圆的离心率范围为,可得.方法点拨:由题知,根据限制条件用表示,即,然后代入不等式,结合整理得关于的齐次不等式,从而求出离心率的取值范围.当然此题解决的方法绝不止这一种,根据几何关系或根本不等式等都能很好的解决.【同类题型强化训练】〔2007湖南〕设分别是椭圆〔〕的左、右焦点,假设在其右准线上存在点使线段的中垂线过点,则椭圆离心率的取值范围是〔〕2.(2008福建)双曲线的两个焦点为,假设为其上一点,且,则双曲线离心率的取值范围为〔〕(1,3) (3,+) 3.〔2010四川〕椭圆的右焦点,其右准线与轴的交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点,则椭圆离心率的取值范围是()5*u.co*m【强化训练答案】答案:如图,,因为线段的中垂线过点,则,即,解得又椭圆的离心率,综上.2.答案:分别为左右焦点,设在双曲线的右支上,则,由,则解得因为在双曲线的右支上,则,即,解得.3.答案:由题意,椭圆上存在点,使得线段的垂直平分线过点,即点到点与点的距离相等w_ww.k#s5_u.co*m而w_w_w.k*于是即w*又,故.策略二:正、余弦定理在求离心率范围问题中的应用例1.为椭圆的焦点,为椭圆上一点,则椭圆的离心率的范围为.解析:如图,为椭圆上一点,设,则在中,由余弦定理,则①②联立①②解得因为在椭圆中,则,解不等式得.方法点拨:根据正、余弦定理结合椭圆的焦半径公式,用表示,即,根据变量解出离心率,但是此题要构成,故点不能在轴上,所以此题结合椭圆的范围可求出离心率的范围.【自我评价】椭圆的左右焦点分别为,假设椭圆上存在点使,则该椭圆离心率的取值范围为.(衡水调研卷)从一块短轴长为的椭圆形玻璃镜中划出一块面积最大的矩形,其面积的取值范围是,则椭圆离心率的取值范围是.3.椭圆的焦点为,,两条准线与轴的交点分别为,假设,则该椭圆离心率的取值范围是〔〕【自我评价答案】1.答案:如图,在中,由正弦定理,则又所以,且,则,解不等式得或〔舍去〕又椭圆的离心率,综上所述.2.答案:设椭圆的标准方程为在第一象限内取点,由椭圆的参数方程知则椭圆的内接矩形长为,宽为,所以内接矩形面积为面积的取值范围为,则所以,即,不等式同时平方得,即且整理解得.3.答案:【本课总结】对于求离心率问题常常有以下方法直接求出,或求出,代公式求解.常见的与相关的一些题设条件:①设是椭圆的一条弦,且为弦的中点,则所在的直线方程的斜率;②设是双曲线的一条弦,且为弦的中点,则所在的直线方程的斜率;③双曲线的渐近线方程或.构造关于的方程或不等式,利用离心率转化成关于的一元方程或不等式求值或求范围.根据圆锥曲线的第二定义〔到定点的距离比上到定直线的距离等于离心率〕可以求离心率的值.根据正、余弦定理或借助于椭圆、双曲线的焦半径公式得到,〔为曲线上的点的横坐标〕,再根据曲线中的取值范围可求离心率的取值范围.对于求离心率的范围问题,其本质在曲线中变量的范围,通过变量的范围构造不等式解不等式即可.圆锥曲线离心率家庭作业1.假设双曲线的离心率是,则实数的值是〔〕2.椭圆〔〕的两个焦点分别为、,以、为边作正三角形,假设椭圆恰好平分三角形的另两边,则椭圆的离心率为〔〕A.B.C.D.3.双曲线的左、右焦点分别为,假设在双曲线的右支上存在一点,使得,则双曲线的离心率的取值范围为.4.双曲线〔〕的一条准线与抛物线的准线重合,则该双曲线的离心率为〔〕5.假设椭圆经过原点,且焦点为、,则其离心率为〔〕6.如果双曲线的实半轴长为2,焦距为6,那么双曲线的离心率为〔〕7.点P〔-3,1〕在椭圆〔〕的左准线上,过点且方向为的光线,经直线反射后通过椭圆的左焦点,则这个椭圆的离心率为〔〕8.、是双曲线〔〕的两焦点,以线段为边作正三角形,假设边的中点在双曲线上,则双曲线的离心率是〔〕9.设双曲线〔〕的半焦距为,直线过,两点.原点到直线的距离为,则双曲线的离心率为()10.双曲线虚轴的一个端点为,两个焦点为、,,则双曲线的离心率为〔〕11.设椭圆的两个焦点分别为、,过作椭圆长轴的垂线交椭圆于点,假设为等腰直角三角形,则椭圆的离心率是________。12.设椭圆〔〕的右焦点为,右准线为,假设过且垂直于轴的弦的长等于点到的距离,则椭圆的离心率是 .13.在给定椭圆中,过焦点且垂直于长轴的弦长为,焦点到相应准线的距离为,则该椭圆的离心率为〔〕14.设,则二次曲线的离心率的取值范围为〔〕A.B.C.D.15.如图,梯形中,,点分有向线段所成的比为,双曲线过、、三点,且以、为焦点.当时,求双曲线离心率的取值范围。【家庭作业参考答案】1.答案:先将方程化成标准形式,然后确定、,再根据求出的值.应选2.答案:设点为椭圆上且平分正三角形一边的点,如图,由平面几何知识可得,所以由椭圆的定义及得:,应选答案:如图,由及双曲线第一定义式,得:,,又.因为点在右支上运动,所以,得,即,又,故填.4.答案:抛物线的准线是,即双曲线的右准线,则,解得,,,应选5.答案:由、知,∴,又∵椭圆过原点,∴,,∴,,所以离心率.应选6.答案:由题设,,则,,因此选7.答案:由题意知,入射光线为,关于的反射光线〔对称关系〕为,则解得,,则,应选8.答案:如图,设的中点为,则的横坐标为,由焦半径公式,即,得,解得〔舍去〕,应选9.答案:由,直线的方程为,由点到直线的距离公式,得,又,∴,两边平方,得,整理得,得或,又,∴,∴,∴,应选10.答案:如以下图,不妨设,,,则,又,在中,由余弦定理,得,即,∴,∵,∴,∴,∴,∴,应选11.答案:12.答案:如以下图,是过且垂直于轴的弦,∵于,∴为到准线的距离,根据椭圆的第二定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论