分式基本性质及运算教案华东师大版数学八年级下册_第1页
分式基本性质及运算教案华东师大版数学八年级下册_第2页
分式基本性质及运算教案华东师大版数学八年级下册_第3页
分式基本性质及运算教案华东师大版数学八年级下册_第4页
分式基本性质及运算教案华东师大版数学八年级下册_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课题一:分式基本性质及运算知识点一:分式的基本性质(一)、分式的概念1.概念:一般的,如果A、B表示两个整数,并且B中含有字母,那么式子A/B叫做分式,A为分子,B为分母.2.分式有(无)意义的条件:(1)使分式有意义:令分母≠0按解方程的方法去求解;(2)使分式无意义:令分母=0按解方程的方法去求解;(3)分式的值为零:使分式值为零:令分子=0且分母≠0,注意:当分子等于0时,看看是否使分母等于0了,如果使分母等于0了,那么要舍去.(二)、分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变.字母表示:,,其中A、B、C是整式,C0.拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即:注意:在应用分式的基本性质时,要注意C0这个限制条件和隐含条件B0题型.(三)、分式的约分及最简分式:1.约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式约分的依据:分式的基本性质.3.分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.4.约分的结果:最简分式(分子与分母没有公因式的分式,叫做最简分式).约分主要分为两类:第一类:分子分母是单项式的,主要分数字,同字母进行约分;第二类:分子分母是多项式的,把分子分母能因式分解的都要进行因式分解,再去找共同的因式约去.(四)、分式的通分及最简公分母:1.定义:把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分.2.最简公分母:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.3.通分时,最简公分母的确定方法:(1)系数取各个分母系数的最小公倍数作为最简公分母的系数.(2)取各个公因式的最高次幂作为最简公分母的因式.(3)如果分母是多项式,则应先把每个分母分解因式,然后判断最简公分母.[典例强化]例1.(1)对下列分式进行约分.(2)请通分下列各组分式.例2.(1)已知a=2,b=5,求的值.(2)已知x=1,y=2,求的值.知识点二:分式的运算

1.分式的乘除运算(1)分式的乘除法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.式子表示为:.分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘.式子表示为:(2)分式的乘方:把分子、分母分别乘方.式子表示为:注意:当分子、分母是多项式时,先进行因式分解再约分.2.分式的加减运算(1)分式的加减法则:同分母分式加减法:分母不变,把分子相加减.式子表示为:异分母分式加减法:先通分,化为同分母的分式,然后再加减.式子表示为:整式与分式加减法:可以把整式当作一个整数,整式前面是负号,要加括号,看作是分母为1的分式,再通分.[典例强化]例1.化简:(1)例2.化简:例3.化简:(1)例4.若,求x、y的值.例5.已知:.试说明:只要原式有意义,无论x取何值,y值均不变.知识点三:分式方程1.分式方程概念:方程中含有分式,并且分母中含有未知数,像这样的方程叫做分式方程.2.分式方程的解法:(1)解分式方程的基本思想:把分式方程转化为整式方程.(2)解分式方程的一般步骤:①去分母,把方程两边同乘以各分母的最简公分母.(产生增根的过程)②解整式方程,得到整式方程的解③检验,把所得的整式方程的解代入最简公分母中.如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为0,则是原方程的解.产生增根的条件是:①是得到的整式方程的解;②代入最简公分母后值为0.在将分式方程变形为整式方程时,方程两边同乘以一个含未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根),这种根通常称为增根.因此,在解分式方程时必须进行检验.[典例强化]例1.解方程:(1)(2)例2.若x=1是方程的增根,则m的值为.例3.(1)若关于x的方程有增根,求a的值.(2)当a为何值时,方程无解.例4.甲、乙两人准备整理一批新到的实验器材.若甲单独整理需要40分钟完工;若甲、乙共同整理20分钟后,乙需再单独整理20分钟才能完工.

(1)问乙单独整理多少分钟完工?

(2)若乙因工作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?知识巩固练习[随堂基础巩固]1.当有何值时,下列分式有意义(1)(2)(3)(4)(5)2.当取何值时,下列分式的值为0.(1)(2) (3)3.计算4.解下列分式方程(1);(2);5.已知:,求的值.[课时跟踪训练]1.当取何值时,下列分式有意义:(1)(2)(3)2.当为何值时,下列分式的值为零:(1)(2)3.甲、乙两班学生参加植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植树x棵,则根据题意列出的方程是()A.B.C.D.4.已知,则的值为()A.-B.C.D.-5.若a,b都是正数,且-=,则=______.6.计算:(1);(2);7.解下列方程:(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论