上海市市八中2023年数学高二上期末考试模拟试题含解析_第1页
上海市市八中2023年数学高二上期末考试模拟试题含解析_第2页
上海市市八中2023年数学高二上期末考试模拟试题含解析_第3页
上海市市八中2023年数学高二上期末考试模拟试题含解析_第4页
上海市市八中2023年数学高二上期末考试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市市八中2023年数学高二上期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过,两点的直线的一个方向向量为,则()A.2 B.2C.1 D.12.下列函数是偶函数且在上是减函数的是A. B.C. D.3.函数为的导函数,令,则下列关系正确的是()A. B.C. D.4.若正三棱柱的所有棱长都相等,D是的中点,则直线AD与平面所成角的正弦值为A. B.C. D.5.下列直线中,倾斜角为锐角的是()A. B.C. D.6.如图,在棱长为的正方体中,为线段的中点,为线段的中点,则直线到直线的距离为()A. B.C. D.7.已知p:,q:,那么p是q的()A.充要条件 B.必要不充分条件C.充分不必要条件 D.既不充分也不必要条件8.已知双曲线的实轴长为10,则该双曲线的渐近线的斜率为()A. B.C. D.9.“”是“直线:与直线:平行”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.数列的一个通项公式为()A. B.C. D.11.在等比数列中,,,则等于()A. B.5C. D.912.已知直线的方向向量为,则直线l的倾斜角为()A.30° B.60°C.120° D.150°二、填空题:本题共4小题,每小题5分,共20分。13.已知球的表面积是,则该球的体积为________.14.已知函数,则曲线在处的切线方程为___________.15.下图是4个几何体的展开图,图①是由4个边长为3的正三角形组成;图②是由四个边长为3的正三角形和一个边长为3的正方形组成;图③是由8个边长为3的正三角形组成;图④是由6个边长为3的正方形组成若直径为4的球形容器(不计容器厚度)内有一几何体,则该几何体的展开图可以是______(填所有正确结论的番号)16.在区间上随机取1个数,则取到的数小于2的概率为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知为数列的前n项和,,且,,其中为常数.(1)求证:数列为等差数列;(2)是否存在,使得是等差数列?并说明理由.18.(12分)已知椭圆上的点到椭圆焦点的最大距离为3,最小距离为1(1)求椭圆的标准方程;(2)已知,分别是椭圆的左右顶点,是椭圆上异于,的任意一点,直线,分别交轴于点,,求的值19.(12分)如图,在三棱柱中,面ABC,,,D为BC的中点(1)求证:平面;(2)若F为中点,求与平面所成角的正弦值20.(12分)已知抛物线的焦点为F,以F和准线上的两点为顶点的三角形是边长为的等边三角形,过的直线交抛物线E于A,B两点(1)求抛物线E的方程;(2)是否存在常数,使得,如果存在,求的值,如果不存在,请说明理由;(3)证明:内切圆的面积小于21.(12分)设,为双曲线:(,)的左、右顶点,直线过右焦点且与双曲线的右支交于,两点,当直线垂直于轴时,△为等腰直角三角形(1)求双曲线的离心率;(2)若双曲线左支上任意一点到右焦点点距离的最小值为3,①求双曲线方程;②已知直线,分别交直线于,两点,当直线倾斜角变化时,以为直径的圆是否过轴上的定点,若过定点,求出定点的坐标;若不过定点,请说明理由22.(10分)已知命题p:点在椭圆内;命题q:函数在R上单调递增(1)若p为真命题,求m的取值范围;(2)若为假命题,求实数m的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】应用向量的坐标表示求的坐标,由且列方程求y值.【详解】由题设,,则且,所以,即,可得.故选:C2、C【解析】根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案【详解】根据题意,依次分析选项:对于A,为一次函数,不是偶函数,不符合题意;对于B,,,为奇函数,不是偶函数,不符合题意;对于C,,为二次函数,是偶函数且在上是减函数,符合题意;对于D,,,为奇函数,不是偶函数,不符合题意;故选C【点睛】本题考查函数的奇偶性与单调性的判定,关键是掌握常见函数的奇偶性与单调性,属于基础题3、B【解析】求导后,令,可求得,再利用导数可得为减函数,比较的大小后,根据为减函数可得答案.【详解】由题意得,,,解得,所以所以,所以为减函数因为,所以,故选:B【点睛】关键点点睛:比较大小的关键是知道的单调性,利用导数可得的单调性.4、A【解析】建立空间直角坐标系,得到相关点的坐标后求出直线的方向向量和平面的法向量,借助向量的运算求出线面角的正弦值【详解】取AC的中点为坐标原点,建立如图所示的空间直角坐标系设三棱柱的棱长为2,则,∴设为平面的一个法向量,由故令,得设直线AD与平面所成角为,则,所以直线AD与平面所成角的正弦值为故选A【点睛】空间向量的引入为解决立体几何问题提供了较好的方法,解题时首先要建立适当的坐标系,得到相关点的坐标后借助向量的运算,将空间图形的位置关系或数量关系转化为向量的运算处理.在解决空间角的问题时,首先求出向量夹角的余弦值,然后再转化为所求的空间角.解题时要注意向量的夹角和空间角之间的联系和区别,避免出现错误5、A【解析】先由直线方程找到直线的斜率,再推导出直线的倾斜角即可.【详解】选项A:直线的斜率,则直线倾斜角为,是锐角,判断正确;选项B:直线的斜率,则直线倾斜角为钝角,判断错误;选项C:直线的斜率,则直线倾斜角为0,不是锐角,判断错误;选项D:直线没有斜率,倾斜角为直角,不是锐角,判断错误.故选:A6、C【解析】连接,,,,在平面中,作,为垂足,将两平行线的距离转化成点到直线的距离,结合余弦定理即同角三角函数基本关系,求得,因此可得,进而可得直线到直线的距离;【详解】解:如图,连接,,,,在平面中,作,为垂足,因为,分别为,的中点,因为,,所以,所以,同理,所以四边形是平行四边形,所以,所以即为直线到直线的距离,在三角形中,由余弦定理得因为,所以是锐角,所以,在直角三角形中,,故直线到直线的距离为;故选:C7、C【解析】若p成立则q成立且若q成立不能得到p一定成立,p是q充分不必要条件.【详解】因为>0,<1,所以若p:成立,一定成立,但q:成立,p:不一定成立,所以p是q的充分不必要条件.故选:C.8、B【解析】利用双曲线的实轴长为,求出,即可求出该双曲线的渐近线的斜率.【详解】由题意,,所以,,所以双曲线的渐近线的斜率为.故选:B.【点睛】本题考查双曲线的方程与性质,考查学生的计算能力,属于基础题.9、C【解析】根据两直线平行求得的值,由此确定充分、必要条件.【详解】由于,所以,当时,两直线重合,不符合题意,所以.所以“”是“直线:与直线:平行”的充要条件.故选:C10、A【解析】根据规律,总结通项公式,即可得答案.【详解】根据规律可知数列的前三项为,所以该数列一个通项公式为故选:A11、D【解析】由等比数列的项求公比,进而求即可.【详解】由题设,,∴故选:D12、B【解析】利用直线的方向向量求出其斜率,进而求出倾斜角作答.【详解】因直线的方向向量为,则直线l的斜率,直线l的倾斜角,于是得,解得,所以直线l的倾斜角为.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设球的半径为r,代入表面积公式,可解得,代入体积公式,即可得答案.【详解】设球的半径为r,则表面积,解得,所以体积,故答案为:【点睛】本题考查已知球的表面积求体积,关键是求出半径,再进行求解,考查基础知识掌握程度,属基础题.14、【解析】求出函数的导函数,即可求出切线的斜率,再利用点斜式求出切线方程【详解】解:∵,∴,又,∴曲线在点处的切线方程为,即.故答案为:.15、①【解析】根据几何体展开图可知①正四面体、②正四棱锥、③正八面体、④正方体,进而求其外接球半径,并与4比较大小,即可确定答案.【详解】若几何体外接球球心为,半径为,①由题设,几何体为棱长为3的正四面体,为底面中心,则,,所以,可得,即,满足要求;②由题设,几何体为棱长为3的正四棱锥,为底面中心,则,所以,可得,即,不满足要求;③由题设,几何体为棱长为3的正八面体,其外接球直径同棱长为3的正四棱锥,故不满足要求;④由题设,几何体为棱长为3的正方体,体对角线的长度即为外接球直径,所以,不满足要求;故答案为:①16、【解析】根据几何概型计算公式进行求解即可.【详解】设“区间上随机取1个数”,对应集合为,区间长度为3,“取到的数小于2”,对应集合为,区间长度为1,所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)详见解析;(2)存在时是等差数列,详见解析.【解析】(1)利用与的关系可得,再结合条件即证;(2)由题可得,,若是等差数列,可得,进而可求数列的通项公式,即证.【小问1详解】∵,∴,∴,又,∴,∴,∴数列为等差数列;【小问2详解】∵,,∴,又,∴,若是等差数列,则,即,解得,当时,由,∴数列的奇数项构成的数列为首项为1,公差为2的等差数列,∴,即,为奇数,∴数列的偶数项构成的数列为首项为2,公差为2的等差数列,∴,即,为偶数,综上可得,当时,,,故存在时,使数列是等差数列.18、(1);(2)-1.【解析】(1)根据椭圆的性质进行求解即可;(2)根据直线的方程,结合平面向量数量积的坐标表示公式进行求解即可.【小问1详解】由题意得,,,所以,椭圆.【小问2详解】由题意可知,,设,则,直线,直线分别令得,,,.【点睛】关键点睛:运用平面向量数量积的坐标表示公式进行求解是解题的关键.19、(1)证明见解析(2)【解析】(1)连接交于点O,连接OD,通过三角形中位线证明即可;(2)建立空间直角坐标系,利用向量法求解即可.【小问1详解】解法1:如图,连接交于点O,连接OD,因为在三棱柱中,四边形是平行四边形,所以O是的中点,因为D为BC的中点,所以在中,,因为平面,平面,所以平面平面解法2:因为在三棱柱中,面ABC,,所以BA,BC,两两垂直,故以B点为坐标原点,建立如图的空间直角坐标系,因为,所以B(0,0,0),A(2,0,0),D(0,1,0),,,所以,,,设平面的一个法向量为,则,即,令,则,∴,平面,所以平面;【小问2详解】设与平面所成角为,由(1)知平面法向量为,F为中点,∴,,∴即与平面所成角正弦值为.20、(1);(2)存在,1;(3)证明见解析.【解析】(1)根据几何关系即可求p;(2)求解为定值1,即可求λ=1;(3)先求的面积,再由(为三角周长)可求内切圆半径r.【小问1详解】由题意焦点到准线的距离等于该正三角形一条边上的高线,因此,∴抛物线E的方程为【小问2详解】设直线的斜率为,直线方程为,记,,消去,得由,得且,,,,因此,即存在实数满足要求【小问3详解】由(2)知,,点F到直线AB的距离,∴的面积记的内切圆半径为r,∵,∴∴内切圆的面积小于21、(1);(2)①;②定点有两个,【解析】(1)由双曲线方程有、、,根据已知条件有,即可求离心率.(2)①由题设有,结合(1)求双曲线参数,写出双曲线方程即可;②由题设可设为,,,联立双曲线方程结合韦达定理求,,,,再由、的方程求,坐标,若在为直径的圆上点,由结合向量垂直的坐标表示列方程,进而求出定点坐标.【小问1详解】由题设,若,且,又△为等腰直角三角形,∴,即,则又,可得.【小问2详解】由题设,,由(1)有,则,即,①由上可知:双曲线方程为.②由①知:,且直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论