版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
培优专题08全等三角形的十大模型之截长补短和手拉手模型◎模型七:截长补短法【模型分析】截长补短的方法适用于求证线段的和差倍分关系。截长:指在长线段中截取一段等于已知线段;补短:指将短线段延长,延长部分等于已知线段。该类题目中常出现等腰三角形、角平分线等关键词句,可以采用截长补短法构造全等三角形来完成证明过程,截长补短法(往往需证2次全等)。【模型图示】(1)截长:在较长线段上截取一段等于某一短线段,再证剩下的那一段等于另一短线段。例:如图,求证BE+DC=AD方法:=1\*GB3①在AD上取一点F,使得AF=BE,证DF=DC;=2\*GB3②在AD上取一点F,使DF=DC,证AF=BE(2)补短:将短线段延长,证与长线段相等1.(2022·全国·八年级课时练习)如图,在中,,,平分,、分别是、上的动点,当最小时,的度数为()A. B. C. D.【答案】B【分析】在AC上截取AE=AN,先证明△AME≌△AMN(SAS),推出ME=MN.当B、M、E共线,BE⊥AC时,BM+ME最小,可求出∠NME的度数,从而求出∠BMN的度数.【详解】如图,在AC上截取AE=AN,∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,在△AME与△AMN中,,∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME,当B、M、E共线,BE⊥AC时,BM+ME最小,∴MN⊥AB∵∠BAC=68°∴∠NME=360°-∠BAC-∠MEA-∠MNA=360°-68°-90°-90°=112°,∴∠BMN=180°-112°=68°.故选:B.【点睛】本题考查了轴对称-最短问题,解题的关键是能够通过构造全等三角形,把BM+MN进行转化,利用垂线段最短解决问题.2.(2022·全国·八年级课时练习)如图,已知四边形ABCD中,AD∥BC,若∠DAB的平分线AE交CD于E,连接BE,且BE恰好平分∠ABC,则AB的长与AD+BC的大小关系是()A.AB>AD+BC B.AB<AD+BC C.AB=AD+BC D.无法确定【答案】C【分析】在AB上截取AF=AD,连接EF,易得∠AEB=90°和△ADE≌△AFE,再证明△BCE≌△BFE,利用全等三角形对应边相等即可得出三条线段之间的关系.【详解】解:如图所示,在AB上截取AF=AD,连接EF,∵AD∥BC,∴∠ABC+∠DAB=180°,又∵BE平分∠ABC,AE平分∠DAB∴∠ABE+∠EAB==90°,∴∠AEB=90°即∠2+∠4=90°,在△ADE和△AFE中,∴△ADE≌△AFE(SAS),所以∠1=∠2,又∠2+∠4=90°,∠1+∠3=90°,所以∠3=∠4,在△BCE和△BFE中,∴△BCE≌△BFE(ASA),所以BC=BF,所以AB=AF+BF=AD+BC;故选C.【点睛】本题考查全等三角形的判定和性质,截长补短是证明线段和差关系的常用方法.3.(2022·江苏·八年级专题练习)如图,为等边三角形,若,则__________(用含的式子表示).【答案】##【分析】在BD上截取BE=AD,连结CE,可证得,从而得到CE=CD,∠DCE=∠ACB=60°,从而得到是等边三角形,进而得到∠BDC=60°,则有,即可求解.【详解】解:如图,在BD上截取BE=AD,连结CE,∵为等边三角形,∴BC=AC,∠BAC=∠ABC=∠ACB=60°,∵,BE=AD,∴,∴CE=CD,∠BCE=∠ACD,∴∠BCE+∠ACE=∠ACD+∠ACE,∴∠DCE=∠ACB=60°,∵CE=CD,∴是等边三角形,∴∠BDC=60°,∴.故答案为:【点睛】本题主要考查了等边三角形判定和性质,全等三角形的判定和性质,解题的关键是做出辅助线构造全等三角形是解题的关键.4.(2021··九年级专题练习)如图,△ABC中,E在BC上,D在BA上,过E作EF⊥AB于F,∠B=∠1+∠2,AB=CD,BF=,则AD的长为________.【答案】【分析】在FA上取一点T,使得FT=BF,连接ET,在CB上取一点K,使得CK=ET,连接DK.想办法证明AT=DK,DK=BD,推出BD=AT,推出BT=AD即可解决问题.【详解】在FA上取一点T,使得FT=BF,连接ET,在CB上取一点K,使得CK=ET,连接DK.∵EB=ET,∴∠B=∠ETB,∵∠ETB=∠1+∠AET,∠B=∠1+∠2,∴∠AET=∠2,∵AE=CD,ET=CK,∴△AET≌△DCK(SAS),∴DK=AT,∠ATE=∠DKC,∴∠ETB=∠DKB,∴∠B=∠DKB,∴DB=DK,∴BD=AT,∴AD=BT,∵BT=2BF=,∴AD=,故答案为:.【点睛】本题考查全等三角形的判定和性质,等腰三角形的判定和性质等知识点,解题关键在于学会添加常用辅助线,构造出全等三角形.5.(2022·江苏·八年级课时练习)如图,在锐角中,,点,分别是边,上一动点,连接交直线于点.(1)如图1,若,且,,求的度数;(2)如图2,若,且,在平面内将线段绕点顺时针方向旋转得到线段,连接,点是的中点,连接.在点,运动过程中,猜想线段,,之间存在的数量关系,并证明你的猜想.【答案】(1)(2),证明见解析【分析】(1)在射线上取一点,使得,证明,求出,然后根据四边形内角和定理及邻补角的性质得出答案;(2)证明,求出,倍长至,连接,PQ,证明,求出,在CF上截取FP=FB,连接BP,易得为正三角形,然后求出,证,可得PQ=PC,∠QPF=∠CPB=60°,则可得为正三角形,然后由得出结论.(1)解:如图1,在射线上取一点,使得,∵,BC=BC,∴(SAS),∴,∴,∴,∴,∵,∴,∴;(2),证明:∵,,∴△ABC是正三角形,∴AB=BC=AC,∠A=∠DBC=60°,又∵,∴(SAS),∴,∴,∴,倍长至,连接,PQ,∵CN=QN,∠QNF=∠CNM,NF=NM,∴(SAS),∴,∠QFN=∠CMN,由旋转的性质得AC=CM,∴,在CF上截取FP=FB,连接BP,∵,∴,∴为正三角形,∴∠BPF=60°,,∴,∵∠QFN=∠CMN,∴FQ//CM,∴,∴,又∵,∴(SAS),∴PQ=PC,∠QPF=∠CPB=60°,∴为正三角形,∴,即.【点睛】本题属于几何变换综合题,考查了等边三角形的判定和性质,全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,利用全等三角形转换线段和角的关系从而解决问题,属于压轴题.◎模型八:手拉手模型【模型分析】将两个三角形绕着公共顶点(即头)旋转某一角度后能完全重合,则这两个三角形构成手拉手全等,也叫旋转型全等,常用“边角边”判定定理证明全等。【模型图示】公共顶点A记为“头”,每个三角形另两个顶点逆时针顺序数的第一个顶点记为“左手”,第二个顶点记为“右手”。对应操作:左手拉左手(即连结BD),右手拉右手(即连结CE),得。【常见模型】(等腰)(等边)(等腰直角)6.(2022·江苏·八年级专题练习)如图,C为线段AE上一动点(不与点,重合),在AE同侧分别作等边三角形ABC和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下结论错误的是(
)A.∠AOB=60° B.AP=BQC.PQ∥AE D.DE=DP【答案】D【分析】利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,得出A正确;根据△CQB≌△CPA(ASA),得出B正确;由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,得出C正确;根据∠CDE=60°,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,可知∠DQE≠∠CDE,得出D错误.【详解】解:∵等边△ABC和等边△CDE,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,在△ACD与△BCE中,,∴△ACD≌△BCE(SAS),∴∠CBE=∠DAC,又∵∠ACB=∠DCE=60°,∴∠BCD=60°,即∠ACP=∠BCQ,又∵AC=BC,在△CQB与△CPA中,,∴△CQB≌△CPA(ASA),∴CP=CQ,又∵∠PCQ=60°可知△PCQ为等边三角形,∴∠PQC=∠DCE=60°,∴PQ∥AE,故C正确,∵△CQB≌△CPA,∴AP=BQ,故B正确,∵AD=BE,AP=BQ,∴AD-AP=BE-BQ,即DP=QE,∵∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,故D错误;∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等边△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,故A正确.故选:D.【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质,利用旋转不变性,解题的关键是找到不变量.7.(2022·全国·八年级课时练习)如图,正和正中,B、C、D共线,且,连接和相交于点F,以下结论中正确的有(
)个①
②连接,则平分
③
④A.4 B.3 C.2 D.1【答案】A【分析】根据“手拉手”模型证明,从而得到,再结合三角形的外角性质即可求解,即可证明①;作于点,于点,证明,结合角平分线的判定定理即可证明②;利用面积法表示和的面积,然后利用比值即可证明③;利用“截长补短”的思想,在上取点,使得,首先判断出为等边三角形,再结合“手拉手”模型推出即可证明④.【详解】解:①∵和均为等边三角形,∴,,,∴,∴,在和中,∴,∴,∵,,∴,故①正确;②如图所示,作于点,于点,则,∵,∴,在和中,∴,∴,∴平分,故②正确;③如图所示,作于点,∵,,∴,∵,∴整理得:,∵,∴,∴,故③正确;④如图所示,在上取点,使得,∵,平分,∴,,∴为等边三角形,∴,,∵,∴,∴,在和中,∴,∴,∵,,∴,故④正确;综上,①②③④均正确;故选:A.【点睛】本题考查等边三角形的判定与性质,全等三角形的判定与性质等,理解等边三角形的基本性质,掌握全等三角形中的辅助线的基本模型,包括“手拉手”模型,截长补短的思想等是解题关键.8.(2022·全国·八年级课时练习)如图,在Rt△ABC中,∠ABC=90°,AB=BC,点D为三角形右侧外一点.且∠BDC=45°.连接AD,若△ACD的面积为,则线段CD的长度为___.【答案】【分析】过点B作BE⊥BD,交DC的延长线于点E,连接AE,由题意易得△EBD是等腰直角三角形,然后可证△BCD≌△BEA,则有∠BDC=∠BEA=45°,AE=CD,进而根据三角形面积公式可进行求解.【详解】解:过点B作BE⊥BD,交DC的延长线于点E,连接AE,如图所示:∵∠ABC=90°,∴,∴,∵∠BDC=45°,∠EBD=90°,∴△EBD是等腰直角三角形,∴∠BDC=∠BED=45°,BE=BD,∵AB=BC,∴△BCD≌△BAE(SAS),∴∠BDC=∠BEA=45°,AE=CD,∴,∵,∴,∴;故答案为.【点睛】本题主要考查三角形全等的判定与性质及等腰直角三角形的性质与判定,解题的关键是构造旋转型全等,抓住等腰直角三角形的特征.9.(2020·湖北·武汉市二桥八年级阶段练习)在中,,,,点D是直线BC上一动点,连接AD,在直线AD的右恻作等边,连接CE,当线段CE的长度最小时,则线段CD的长度为__________.【答案】3【分析】以AC为边向左作等边三角形ACF,连接DF,先根据直角三角形中所对的直角边是斜边的一半求出BC的长,再由勾股定理求出AC的长,根据作的辅助线证明,则,当时,DF的长是最小的,即CE的长最小,求出此时的长即可.【详解】解:如图,以AC为边向左作等边三角形ACF,连接DF,∵,,∴,∵,∴,∴,∵是等边三角形,∴,,∵是等边三角形,∴,,∵,∴,在和中,,∴,∴,当时,DF的长是最小的,即CE的长最小,∵,,∴,,∴当线段CE的长度最小时,则线段CD的长度为3.故答案是:3.【点睛】本题考查线段最值问题,解题的关键是作辅助线构造全等三角形,以及掌握有角的特殊直角三角形的性质和等边三角形的性质.10.(2022·江苏·八年级课时练习)△ACB和△DCE是共顶点C的两个大小不一样的等边三角形.(1)问题发现:如图1,若点A,D,E在同一直线上,连接AE,BE.①求证:△ACD≌△BCE;②求∠AEB的度数.(2)类比探究:如图2,点B、D、E在同一直线上,连接AE,AD,BE,CM为△DCE中DE边上的高,请求∠ADB的度数及线段DB,AD,DM之间的数量关系,并说明理由.(3)拓展延伸:如图3,若设AD(或其延长线)与BE的所夹锐角为α,则你认为α为多少度,并证明.【答案】(1)①见解析;②∠AEB=60°;(2)∠ADB=60°,2DM+BD=AD,理由见解析;(3)α=60°,证明见解析【分析】(1)①由△ACB和△DCE是等边三角形知AC=BC,CD=CE,∠ACD=60°-∠DCB=∠BCE,据此即可得证;②由△ACD≌△BCE知∠ADC=∠BEC=120°,结合∠CED=60°可得∠AEB=60°;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 急腹症护理课件
- 钻具租赁合同模板(2篇)
- 阅读馆合伙人合同(2篇)
- 认识平行 课件
- 输尿管超声课件
- 幼儿园小班音乐《大树妈妈》教案
- 西京学院《网页设计与制作》2022-2023学年期末试卷
- 幼儿园语言教育中的谈话活动第5章
- 西京学院《单片机原理及应用实验》2022-2023学年期末试卷
- 西华师范大学《中学教研活动组织指导》2023-2024学年第一学期期末试卷
- DB32-T 3260-2017水利工程施工图设计文件编制规范-(高清现行)
- 软件测试判断附答案
- 公共管理硕士(MPA)在读证明
- Q-FT B039-2006汽车产品油漆涂层技术条件
- 施工升降机安拆方案交底
- 留守儿童谈心记录留守儿童谈心记录
- GB-T 9251-2022 气瓶水压试验方法(高清版)
- 美术领域知识讲座
- 边坡监测合同(与甲方)
- 《等边三角形》教学设计
- Q∕GDW 12176-2021 反窃电监测终端技术规范
评论
0/150
提交评论