版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年人教版七7年级下册数学期末考试试卷一、选择题1.“49的平方根是”的表达式正确的是()A. B. C. D.2.下列运动中,属于平移的是()A.冷水加热过程中,小气泡上升成为大气泡 B.急刹车时汽车在地面上的滑动C.随手抛出的彩球运动 D.随风飘动的风筝在空中的运动3.在平面直角坐标系中,在第三象限的点是()A.(-3,5) B.(1,-2) C.(-2,-3) D.(1,1)4.下列命题中,是假命题的是()A.两条直线被第三条直线所截,同位角相等B.同旁内角互补,两直线平行C.在同一平面内,过一点有且只有一条直线与已知直线垂直D.如果两条直线都与第三条直线平行,那么这两条直线也互相平行5.已知,如图,点D是射线上一动点,连接,过点D作交直线于点E,若,,则的度数为()A. B. C.或 D.或6.下列命题正确的是()A.若a>b,b<c,则a>c B.若a∥b,b∥c,则a∥cC.49的平方根是7 D.负数没有立方根7.①如图1,,则;②如图2,,则;③如图3,,则;④如图4,直线,点O在直线EF上,则.以上结论正确的个数是()A.1个 B.2个 C.3个 D.4个8.如图,动点P从点出发,沿所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长方形的边的夹角为45°,第1次碰到长方形边上的点的坐标为……第2021次碰到长方形边上的坐标为()A. B.C. D.九、填空题9.计算:的结果为_____.十、填空题10.已知点P(3,﹣1)关于x轴的对称点Q的坐标是(a+b,1﹣b),则a=___,b=___.十一、填空题11.如图,△ABC中∠BAC=60°,将△ACD沿AD折叠,使得点C落在AB上的点C′处,连接C′D与C′C,∠ACB的角平分线交AD于点E;如果BC′=DC′;那么下列结论:①∠1=∠2;②AD垂直平分C′C;③∠B=3∠BCC′;④DC∥EC;其中正确的是:________;(只填写序号)十二、填空题12.如图,直线,,,则________.十三、填空题13.如图,在长方形纸片ABCD中,点E、F分别在AD、BC上,将长方形纸片沿直线EF折叠后,点D、C分别落在点D1、C1的位置,如果∠=40°,那么∠EFB的度数是_____度.十四、填空题14.如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若,则m,n,p,q四个实数中,绝对值最大的是________.十五、填空题15.若点P(2-m,m+1)在x轴上,则P点坐标为_____.十六、填空题16.如图,在平面直角坐标系中,点由原点出发,第一次跳动至点,第二次向左跳动3个单位至点,第三次跳动至点,第四次向左跳动5个单位至点,第五次跳动至点,…,依此规律跳动下去,点的第2020次跳动至点的坐标是_______.十七、解答题17.(1)(2)(3)十八、解答题18.求下列各式中的x值:(1)(2)十九、解答题19.完成下面的证明.如图,AB∥CD,∠B+∠D=180°,求证:BE∥DF.分析:要证BE∥DF,只需证∠1=∠D.证明:∵AB∥CD(已知)∴∠B+∠1=180°()∵∠B+∠D=180°(已知)∴∠1=∠D()∴BE∥DF()二十、解答题20.在平面直角坐标系中,△ABC三个顶点的坐标分别是A(﹣2,2)、B(2,0),C(﹣4,﹣2).(1)在平面直角坐标系中画出△ABC;(2)若将(1)中的△ABC平移,使点B的对应点B′坐标为(6,2),画出平移后的△A′B′C′;(3)求△A′B′C′的面积.二十一、解答题21.阅读下面的文字,解答问题.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:(1)若的整数部分为,小数部分为,求的值.(2)已知:,其中是整数,且,求的值.二十二、解答题22.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A表示的数为________;(2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及的点,并比较它们的大小.二十三、解答题23.已知,AB∥DE,点C在AB上方,连接BC、CD.(1)如图1,求证:∠BCD+∠CDE=∠ABC;(2)如图2,过点C作CF⊥BC交ED的延长线于点F,探究∠ABC和∠F之间的数量关系;(3)如图3,在(2)的条件下,∠CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分∠ABC,求∠BGD﹣∠CGF的值.二十四、解答题24.(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学知识有,请判断光线a与光线b是否平行,并说明理由.(2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等,如图2有一口井,已知入射光线与水平线的夹角为,问如何放置平面镜,可使反射光线b正好垂直照射到井底?(即求与水平线的夹角)(3)如图3,直线上有两点A、C,分别引两条射线、.,,射线、分别绕A点,C点以1度/秒和3度/秒的速度同时顺时针转动,设时间为t,在射线转动一周的时间内,是否存在某时刻,使得与平行?若存在,求出所有满足条件的时间t.二十五、解答题25.如图1,已知线段AB、CD相交于点O,连接AC、BD,我们把形如图1的图形称之为“8字形”.如图2,∠CAB和∠BDC的平分线AP和DP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)仔细观察,在图2中有个以线段AC为边的“8字形”;(2)在图2中,若∠B=96°,∠C=100°,求∠P的度数;(3)在图2中,若设∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间存在着怎样的数量关系(用α、β表示∠P),并说明理由;(4)如图3,则∠A+∠B+∠C+∠D+∠E+∠F的度数为.【参考答案】一、选择题1.A解析:A【分析】根据平方根的表示方法,即可得到答案.【详解】解:“49的平方根是”表示为:.故选A.【点睛】本题主要考查平方根的表示法,掌握正数a的平方根表示为,是解题的关键.2.B【详解】解:A、气泡在上升的过程中变大,不属于平移;B、急刹车时汽车在地面上的滑动属于平移;C、随手抛出的彩球运动既发生了平移,也发生了旋转,不属于平移;D、随风飘动的树叶在空中的运动,解析:B【详解】解:A、气泡在上升的过程中变大,不属于平移;B、急刹车时汽车在地面上的滑动属于平移;C、随手抛出的彩球运动既发生了平移,也发生了旋转,不属于平移;D、随风飘动的树叶在空中的运动,既发生了平移,也发生了旋转.故选B.【点睛】此题主要考查了平移,关键是掌握平移时图形中所有点移动的方向一致,并且移动的距离相等.3.C【分析】根据第三象限点的特征,依次判断即可.【详解】解:A:,,因此在第二象限,故错误;B:,,,因此在第四象限,故错误;C:,,,因此在第三象限,故正确;D:,,,因此在第一象限,故错误;故答案为:C【点睛】本题主要考查了平面直角坐标系象限的特征,熟悉掌握各象限的横纵坐标的取值范围是解题的关键.4.A【分析】根据平行线的性质与判定,同位角,内错角,同旁内角,平行公理及推论可逐项判断求解.【详解】解:A.两平行直线被第三条直线所截得的同位角相等,故此选项为假命题,符合题意;B.同旁内角互补,两直线平行,真命题,不符合题意;C.在同一平面内,过一点有且只有一条直线与已知直线垂直,真命题,不符合题意;D.如果两条直线都与第三条直线平行,那么这两条直线也互相平行,真命题,不符合题意;故选A.【点睛】本题主要考查平行线的性质与判定,同位角,内错角,同旁内角,平行公理及推论,掌握相关内容是解题的关键.5.D【分析】分点D在线段AB上及点D在线段AB的延长线上两种情况考虑:当点D在线段AB上时,由DE∥BC可得出∠ADE的度数,结合∠ADC=∠ADE+∠CDE可求出∠ADC的度数;当点D在线段AB的延长线上时,由DE∥BC可得出∠ADE的度数,结合∠ADC=∠ADE-∠CDE可求出∠ADC的度数.综上,此题得解.【详解】解:当点D在线段AB上时,如图1所示.∵DE∥BC,∴∠ADE=∠ABC=84°,∴∠ADC=∠ADE+∠CDE=84°+20°=104°;当点D在线段AB的延长线上时,如图2所示.∵DE∥BC,∴∠ADE=∠ABC=84°,∴∠ADC=∠ADE-∠CDE=84°-20°=64°.综上所述:∠ADC=104°或64°.故选:D.【点睛】本题考查了平行线的性质,分点D在线段AB上及点D在线段AB的延长线上两种情况,求出∠ADC的度数是解题的关键.6.B【解析】【分析】根据不等式的性质、平行线的判定、平方根和立方根依次判定各项后即可解答.【详解】选项A,由a>b,b>c,则a>c,可得选项A错误;选项B,若a∥b,b∥c,则a∥c,正确;选项C,由49的平方根是±7,可得选项C错误;选项D,由负数有立方根,可得选项D错误;故选B.【点睛】本题考查了命题的知识,关键是根据不等式的性质、平行线的判定、平方根和立方根解答.7.B【分析】如图1所示,过点E作EF//AB,由平行线的性质即可得到∠A+∠AEF=180°,∠C+∠CEF=180°,则∠A+∠C+∠AEC=360°,故①错误;如图2所示,过点P作PE//AB,由平行线的性质即可得到∠A=∠APE=180°,∠C=∠CPE,再由∠APC=∠APE=∠CPE,即可得到∠APC=∠A-∠C,即可判断②;如图3所示,过点E作EF//AB,由平行线的性质即可得到∠A+∠AEF=180°,∠1=∠CEF,再由∠AEF+∠CEF=∠AEC,即可判断③;由平行线的性质即可得到,,再由,即可判断④.【详解】解:①如图所示,过点E作EF//AB,∵AB//CD,∴AB//CD//EF,∴∠A+∠AEF=180°,∠C+∠CEF=180°,∴∠A+∠AEF+∠C+∠CEF=360°,又∵∠AEF+∠CEF=∠AEC,∴∠A+∠C+∠AEC=360°,故①错误;②如图所示,过点P作PE//AB,∵AB//CD,∴AB//CD//PE,∴∠A=∠APE=180°,∠C=∠CPE,又∵∠APC=∠APE=∠CPE,∴∠APC=∠A-∠C,故②正确;③如图所示,过点E作EF//AB,∵AB//CD,∴AB//CD//EF,∴∠A+∠AEF=180°,∠1=∠CEF,又∵∠AEF+∠CEF=∠AEC,∴180°-∠A+∠1=∠AEC,故③错误;④∵,∴,,∵,∴,∴,故④正确;故选B【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质8.A【分析】该题属于找规律题型,只要把运动周期找出来即可解决.【详解】由反弹线前后对称规律,得出第1-6次碰到长方形的边的点的坐标依次为:(0,3)(1,4)(5,0)(8,3)(7,4)(3解析:A【分析】该题属于找规律题型,只要把运动周期找出来即可解决.【详解】由反弹线前后对称规律,得出第1-6次碰到长方形的边的点的坐标依次为:(0,3)(1,4)(5,0)(8,3)(7,4)(3,0)由此可以得出运动周期为6次一循环,2021÷6=366……5,第2021次碰到长方形的边的点的坐标为(7,4),故选:A.【点睛】本题主要考查了规律性,图形的变化,解题关键是明确反弹前后特征,发现点的变化周期,利用变化周期循环规律解答.九、填空题9.6【分析】根据算术平方根的定义即可求解.【详解】解:的结果为6.故答案为6【点睛】考查了算术平方根,非负数a的算术平方根a有双重非负性:①被开方数a是非负数;②算术平方根a本身是非负数解析:6【分析】根据算术平方根的定义即可求解.【详解】解:的结果为6.故答案为6【点睛】考查了算术平方根,非负数a的算术平方根a有双重非负性:①被开方数a是非负数;②算术平方根a本身是非负数.十、填空题10.0【分析】根据题意结合关于x轴对称点的性质得出关于a,b的等式,进而求出答案.【详解】解:∵点P(3,-1)关于x轴的对称点Q的坐标是(a+b,1-b),∴a+b=3,1-b=1,解析:0【分析】根据题意结合关于x轴对称点的性质得出关于a,b的等式,进而求出答案.【详解】解:∵点P(3,-1)关于x轴的对称点Q的坐标是(a+b,1-b),∴a+b=3,1-b=1,解得:a=3,b=0,故答案为:3,0.【点睛】此题主要考查了关于x轴对称点的性质,正确得出a,b的值是解题关键.十一、填空题11.①②④【分析】根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可【详解】解:如图,∵△ACD沿AD折叠,使得点C落在AB上的点C′处,∴∠1=∠2,A=AC,DC解析:①②④【分析】根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可【详解】解:如图,∵△ACD沿AD折叠,使得点C落在AB上的点C′处,∴∠1=∠2,A=AC,DC=D,∴AD垂直平分C′C;∴①,②都正确;∵B=D,DC=D,∴B=D=DC,∴∠3=∠B,∠4=∠5,∴∠3=∠4+∠5=2∠5即∠B=2∠BC;∴③错误;根据折叠的性质,得∠ACD=∠AD=∠B+∠3=2∠3,∵∠ACB的角平分线交AD于点E,∴2(∠6+∠5)=2∠B,∴∴D∥EC∴④正确;故答案为:①②④.【点睛】本题考查了折叠的性质,平行线的判定,外角的性质,线段垂直平分线的性质,熟练掌握各种基本性质是解题的关键.十二、填空题12.120°.【分析】延长AB交直线b于点E,可得,则,再由,可得,即可求解.【详解】解:如图,延长AB交直线b于点E,∵,∴,∴,∵,,∴,∴.故答案为:.【点睛】解析:120°.【分析】延长AB交直线b于点E,可得,则,再由,可得,即可求解.【详解】解:如图,延长AB交直线b于点E,∵,∴,∴,∵,,∴,∴.故答案为:.【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键.十三、填空题13.70【分析】先利用折叠的性质得出∠DEF=∠D1EF,再由利用平角的应用求出∠DEF,最后长方形的性质即可得出结论.【详解】解:如图,由折叠可得∠DEF=∠D1EF,∵∠AED1=40°解析:70【分析】先利用折叠的性质得出∠DEF=∠D1EF,再由利用平角的应用求出∠DEF,最后长方形的性质即可得出结论.【详解】解:如图,由折叠可得∠DEF=∠D1EF,∵∠AED1=40°,∴∠DEF==70°,∵四边形ABCD是长方形,∴AD∥BC,∴∠EFB=∠DEF=70°.故答案为:70.【点睛】考查了长方形的性质,折叠的性质,关键是利用折叠的性质得出∠DEF=∠D1EF解答.十四、填空题14.【分析】根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【详解】∵,∴n和q互为相反数,O在线段NQ的中点处,∴绝对值最大的是点P表示的数.故解析:【分析】根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【详解】∵,∴n和q互为相反数,O在线段NQ的中点处,∴绝对值最大的是点P表示的数.故答案为:.【点睛】本题考查了实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.十五、填空题15.(3,0)【分析】根据x轴上的点的坐标纵坐标为0列方程可求出m的值,即可得出点P坐标.【详解】∵点P(2-m,m+1)在x轴上,∴m+1=0,解得:m=-1,∴2-m=3,∴P点坐标解析:(3,0)【分析】根据x轴上的点的坐标纵坐标为0列方程可求出m的值,即可得出点P坐标.【详解】∵点P(2-m,m+1)在x轴上,∴m+1=0,解得:m=-1,∴2-m=3,∴P点坐标为(3,0),故答案为:(3,0)【点睛】本题考查了点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键.十六、填空题16.【分析】根据点的坐标、坐标的平移寻找规律即可求解.【详解】解:因为P1(1,1),P2(-2,1),P3(2,2),P4(-3,2),P5(3,3),P6(-4,3),P7(4,解析:【分析】根据点的坐标、坐标的平移寻找规律即可求解.【详解】解:因为P1(1,1),P2(-2,1),P3(2,2),P4(-3,2),P5(3,3),P6(-4,3),P7(4,4),P8(-5,4),…P2n-1(n,n),P2n(-n-1,n)(n为正整数),所以2n=2020,∴n=1010,所以P2020(-1011,1010),故答案为(-1011,1010).【点睛】本题考查了点的坐标、坐标的平移,解决本题的关键是寻找点的变化规律.十七、解答题17.(1);(2);(3)【分析】(1)先化简后计算即可;(2)先化简后计算即可;(3)首先去括号,然后再合并即可.【详解】解:(1)原式(2)原式(3)原式【点睛】此题主要考查了实解析:(1);(2);(3)【分析】(1)先化简后计算即可;(2)先化简后计算即可;(3)首先去括号,然后再合并即可.【详解】解:(1)原式(2)原式(3)原式【点睛】此题主要考查了实数运算,关键是掌握数的开方,正确化简各数.十八、解答题18.(1)x=-15;(2)x=8或x=-4【分析】(1)利用直接开立方法求得x的值;(3)利用直接开平方法求得x的值.【详解】解:(1),∴,∴,解得:x=-15;(2),∴,∴解析:(1)x=-15;(2)x=8或x=-4【分析】(1)利用直接开立方法求得x的值;(3)利用直接开平方法求得x的值.【详解】解:(1),∴,∴,解得:x=-15;(2),∴,∴,解得:x=8或x=-4.【点睛】本题考查了立方根和平方根.正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.十九、解答题19.两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行【分析】要证BE∥DF,只需证∠1=∠D,由AB∥CD可知∠B+∠1=180°,又有∠B+∠D=180°,由此即可证得.【详解】解析:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行【分析】要证BE∥DF,只需证∠1=∠D,由AB∥CD可知∠B+∠1=180°,又有∠B+∠D=180°,由此即可证得.【详解】证明:∵AB∥CD(已知)∴∠B+∠1=180°(两直线平行,同旁内角互补)∵∠B+∠D=180°(已知)∴∠1=∠D(同角的补角相等),∴BE∥DF(同位角相等,两直线平行)故答案为:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行.【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.二十、解答题20.(1)见解析;(2)见解析;(3)10【分析】(1)根据点A、B、C的坐标描点,从而可得到△ABC;(2)利用点B和B′的坐标关系可判断△ABC先向右平移4个单位,再向上平移2个单位得到△A′解析:(1)见解析;(2)见解析;(3)10【分析】(1)根据点A、B、C的坐标描点,从而可得到△ABC;(2)利用点B和B′的坐标关系可判断△ABC先向右平移4个单位,再向上平移2个单位得到△A′B′C′,利用此平移规律写出A′、C′的坐标,然后描点即可得到△A′B′C′;(3)用一个矩形的面积分别减去三个三角形的面积去计算△A′B′C′的面积.【详解】解:(1)如图,△ABC为所作;(2)如图,△A′B′C′为所作;(3)△A′B′C′的面积=.【点睛】本题考查了平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.二十一、解答题21.(1)6;(2)12−【分析】(1)先求出的取值范围即可求出a和b的值,然后代入求值即可;(2)先求出的取值范围,即可求出10+的整数部分和小数部分,从而求出x和y,从而求出结论.【详解】解析:(1)6;(2)12−【分析】(1)先求出的取值范围即可求出a和b的值,然后代入求值即可;(2)先求出的取值范围,即可求出10+的整数部分和小数部分,从而求出x和y,从而求出结论.【详解】解:(1)∵3<<4,∴a=3,b=-3∴=+-3-=6(2)∵1<<2.又∵10+=x+y,其中x是整数,且0<y<1,∴x=11,y=−1.∴x−y=11−(−1)=12−【点睛】此题考查的是求无理数的整数部分、小数部分和实数的运算,掌握求无理数的取值范围是解决此题的关键.二十二、解答题22.(1);(2)①见解析;②见解析,【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)①根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②解析:(1);(2)①见解析;②见解析,【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)①根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,再把N点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a,∵a2=2,∴a=,故答案为:,;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b,∴b2=5,∴b=±,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,则M表示的数为-3+,看图可知,表示-0.5的N点在M点的右方,∴比较大小:.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.二十三、解答题23.(1)证明见解析;(2);(3).【分析】(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;(2)过点作,同(1)的方法,先根据平行线的性质解析:(1)证明见解析;(2);(3).【分析】(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;(2)过点作,同(1)的方法,先根据平行线的性质得出,,从而可得,再根据垂直的定义可得,由此即可得出结论;(3)过点作,延长至点,先根据平行线的性质可得,,从而可得,再根据角平分线的定义、结合(2)的结论可得,然后根据角的和差、对顶角相等可得,由此即可得出答案.【详解】证明:(1)如图,过点作,,,,,即,,;(2)如图,过点作,,,,,即,,,,,;(3)如图,过点作,延长至点,,,,,平分,平分,,由(2)可知,,,又,.【点睛】本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.二十四、解答题24.(1)平行,理由见解析;(2)65°;(3)5秒或95秒【分析】(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;(2)根据入射光线与镜面的夹角与反解析:(1)平行,理由见解析;(2)65°;(3)5秒或95秒【分析】(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;(2)根据入射光线与镜面的夹角与反射光线与镜面的夹角相等可得∠1=∠2,然后根据平角等于180°求出∠1的度数,再加上40°即可得解;(3)分①AB与CD在EF的两侧,分别表示出∠ACD与∠BAC,然后根据两直线平行,内错角相等列式计算即可得解;②CD旋转到与AB都在EF的右侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解;③CD旋转到与AB都在EF的左侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解.【详解】解:(1)平行.理由如下:如图1,∵∠3=∠4,∴∠5=∠6,∵∠1=∠2,∴∠1+∠5=∠2+∠6,∴a∥b(内错角相等,两直线平行);(2)如图2:∵入射光线与镜面的夹角与反射光线与镜面的夹角相等,∴∠1=∠2,∵入射光线a与水平线OC的夹角为40°,b垂直照射到井底,∴∠1+∠2=180°-40°-90°=50°,∴∠1=×50°=25°,∴MN与水平线的夹角为:25°+40°=65°,即MN与水平线的夹角为65°,可使反射光线b正好垂直照射到井底;(3)存在.如图①,AB与CD在EF的两侧时,∵∠BAF=105°,∠DCF=65°,∴∠ACD=180°-65°-3t°=115°-3t°,∠BAC=105°-t°,要使AB∥CD,则∠ACD=∠BAC,即115-3t=105-t,解得t=5;如图②,CD旋转到与AB都在EF的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商铺租赁及装修条款合同书:2024年特定商铺
- 专业钢管供应商长期购销合同(2024年度)版
- 房屋建筑工程总承包合同书样本
- 石棉在炉窑绝热中的应用考核试卷
- 2024年度借款期限协议样本版
- 2024年车辆租赁正规协议模板版
- 2024年危险品物流安全管理规范协议版
- 512防震减灾活动方案
- 2024年度融资协议文本版
- 2024年工程劳务分包详细施工协议版
- 道路开口施工方案
- 咖啡厅室内设计PPT
- 北师大一年级数学上册期中测试卷及答案
- 小学二年级上册美术课件-5.17漂亮的钟-岭南版(14张)ppt课件
- 苏教版六年级上册音乐教案全册
- 江苏某市政道路地下通道工程深基坑支护及土方开挖施工专项方案(附图)
- 生物校本教材—生活中的生物科学
- 北京市建筑施工起重机械设备管理的若干规定
- 新建时速200公里客货共线铁路设计暂行规定
- 边沟、排水沟、截水沟施工方案(完整版)
- 实行特殊工时工作制实施方案
评论
0/150
提交评论