重庆市江津长寿巴县等七校2023年高二数学第一学期期末综合测试试题含解析_第1页
重庆市江津长寿巴县等七校2023年高二数学第一学期期末综合测试试题含解析_第2页
重庆市江津长寿巴县等七校2023年高二数学第一学期期末综合测试试题含解析_第3页
重庆市江津长寿巴县等七校2023年高二数学第一学期期末综合测试试题含解析_第4页
重庆市江津长寿巴县等七校2023年高二数学第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市江津长寿巴县等七校2023年高二数学第一学期期末综合测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线的倾斜角为()A B.C. D.2.如图,在四面体中,,,两两垂直,已知,,则直线与平面所成角的正弦值为()A. B.C. D.3.命题“若,则”的逆否命题是()A.若,则 B.若,则C.若,则 D.若,则4.音乐与数学有着密切的联系,我国春秋时期有个著名的“三分损益法”:以“宫”为基本音,“宫”经过一次“损”,频率变为原来的,得到“微”,“微”经过一次“益”,频率变为原来的,得到“商”……依此规律损益交替变化,获得了“宫”“微”“商”“羽”“角”五个音阶.据此可推得()A.“商”“羽”“角”的频率成公比为的等比数列B.“宫”“微”“商”的频率成公比为的等比数列C.“宫”“商”“角”的频率成公比为的等比数列D.“角”“商”“宫”的频率成公比为的等比数列5.下列对动直线的四种表述不正确的是()A.与曲线C:可能相离,相切,相交B.恒过定点C.时,直线斜率是0D.时,直线的倾斜角是135°6.若直线与平行,则m的值为()A.-2 B.-1或-2C.1或-2 D.17.若函数在区间上有两个极值点,则实数的取值范围是()A. B.C. D.8.若方程表示焦点在y轴上的双曲线,则k的取值范围是()A. B.C. D.9.若圆C:上有到的距离为1的点,则实数m的取值范围为()A. B.C. D.10.在数列中,已知,则“”是“是单调递增数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.在中国古代,人们用圭表测量日影长度来确定节气,一年之中日影最长一天被定为冬至.从冬至算起,依次有冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,其日影长依次成等差数列,若冬至、立春、春分日影长之和为31.5尺,小寒、雨水,清明日影长之和为28.5尺,则大寒、惊蛰、谷雨日影长之和为()A.25.5尺 B.34.5尺C.37.5尺 D.96尺12.若直线与直线垂直,则a的值为()A.2 B.1C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线上一横坐标为5的点到焦点的距离为6,且该抛物线的准线与双曲线:的两条渐近线所围成的三角形面积为,则双曲线的离心率为__________.14.抛物线的焦点坐标为________15.在公差不为的等差数列中,,,成等比数列,数列的前项和为(1)求数列的通项公式;(2)若,且数列的前项和为,求16.设直线,直线,若,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱柱中,四边形为矩形,,,点E为棱的中点,.(1)求证:平面平面;(2)求平面AEB与平面夹角的余弦值.18.(12分)已知函数(1)求曲线在点(e,)的切线方程;(2)求函数的单调区间.19.(12分)已知椭圆C:的离心率为,点为椭圆C上一点(1)求椭圆C的方程;(2)若M,N是椭圆C上的两个动点,且的角平分线总是垂直于y轴,求证:直线MN的斜率为定值20.(12分)已知函数在其定义域内有两个不同的极值点(1)求a的取值范围;(2)设的两个极值点分别为,证明:21.(12分)已知项数为的数列是各项均为非负实数的递增数列.若对任意的,(),与至少有一个是数列中的项,则称数列具有性质.(1)判断数列,,,是否具有性质,并说明理由;(2)设数列具有性质,求证:;(3)若数列具有性质,且不是等差数列,求项数的所有可能取值.22.(10分)已知等差数列满足:,,数列的前n项和为(1)求及;(2)设是首项为1,公比为3的等比数列,求数列的前项和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】设直线倾斜角为,则,再结合直线的斜率与倾斜角的关系求解即可.【详解】设直线的倾斜角为,则,∵,所以.故选:C2、D【解析】利用三线垂直建立空间直角坐标系,将线面角转化为直线的方向向量和平面的法向量所成的角,再利用空间向量进行求解.【详解】以,,所在直线为轴,轴,轴建立空间直角坐标系(如图所示),则,,,,,设平面的一个法向量为,则,即,令,则,,所以平面的一个法向量为;设直线与平面所成角为,则,即直线与平面所成角的正弦值为.故选:D.3、C【解析】根据逆否命题的定义写出逆否命题即得【详解】解:以否定的结论作条件、否定的条件作结论得出的命题为原命题的逆否命题,即“若,则”的逆否命题是“若,则”故选:C4、C【解析】根据文化知识,分别求出相对应的频率,即可判断出结果【详解】设“宫”的频率为a,由题意经过一次“损”,可得“徵”的频率为a,“徵”经过一次“益”,可得“商”的频率为a,“商”经过一次“损”,可得“羽”频率为a,最后“羽”经过一次“益”,可得“角”的频率是a,由于a,a,a成等比数列,所以“宫、商、角”的频率成等比数列,且公比为,故选:C【点睛】本题考查等比数列的定义,考查学生的运算能力和转换能力及思维能力,属于基础题5、A【解析】根据过定点的直线系求出恒过点可判断B,由点与圆的位置关系可判断A,由直线方程可判断CD.【详解】直线可化为,令,,解得,,所以直线恒过定点,而该定点在圆C:内部,所以必与该圆相交当时,直线方程为,故斜率为0,当时,直线方程为,故斜率为,倾斜角为135°.故选:A6、C【解析】利用两直线平行的判定有,即可求参数值.【详解】由题设,,可得或.经验证不重合,满足题意,故选:C.7、D【解析】由题意,即在区间上有两个异号零点,令,利用函数的单调性与导数的关系判断单调性,数形结合即可求解【详解】解:由题意,即在区间上有两个异号零点,构造函数,则,令,得,令,得,所以函数在上单调递增,在上单调递减,又时,,时,,且,所以,即,所以的范围故选:D8、B【解析】由条件可得,即可得到答案.【详解】方程表示焦点在y轴上的双曲线所以,即故选:B9、C【解析】利用圆与圆的位置关系进行求解即可.【详解】将圆C的方程化为标准方程得,所以.因为圆C上有到的距离为1的点,所以圆C与圆:有公共点,所以因为,所以,解得,故选:C10、C【解析】分别求出当、“是单调递增数列”时实数的取值范围,利用集合的包含关系判断可得出结论.【详解】已知,若,即,解得.若数列是单调递增数列,对任意的,,即,所以,对任意的恒成立,故,因此,“”是“是单调递增数列”充要条件.故选:C.11、A【解析】由题意可知,十二个节气其日影长依次成等差数列,设冬至日的日影长为尺,公差为尺,利用等差数列的通项公式,求出,即可求出,从而得到答案【详解】设从冬至日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列{},如冬至日的日影长为尺,设公差为尺.由题可知,所以,,,,故选:A12、A【解析】根据两条直线垂直的条件列方程,解方程求得的值.【详解】由于直线与直线垂直,所以,解得.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】由题意求得抛物线的准线方程为,进而得到准线与双曲线C的渐近线围成的三角形面积,求得,再结合和离心率的定义,即可求解.【详解】由题意,抛物线上一横坐标为5的点到焦点的距离为6,根据抛物线定义,可得,即,所以抛物线的准线方程为,又由双曲线C的两条渐近线方程为,则抛物线的准线与双曲线C的两条渐近线围成的三角形面积为,解得,又由,可得,所以双曲线C离心率.故答案为:3.14、【解析】利用焦点坐标为求解即可【详解】因为,所以,所以焦点的坐标为,故答案:15、(1)(2)【解析】(1)由解出,再由前项和为55求得,由等差数列通项公式即可求解;(2)先求出,再由裂项相消求和即可.【小问1详解】设公差为,由,,成等比数列,可得,即有,整理得,数列的前项和为55,可得,解得1,1,则;【小问2详解】,则16、##0.5【解析】根据两直线平行可得,,即可求出【详解】依题可得,,解得故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)根据矩形及勾股定理的逆定理可得线面垂直的条件,再由平面,即可证明面面垂直;(2)建立空间直角坐标后,求出相关法向量,再用夹角公式即可.【小问1详解】证明:由三棱柱的性质及可知四边形为菱形又∵∴为等边三角形∴,又∵,∴,∴又∵四边形为矩形∴又∵∴平面又∵平面∴平面平面.【小问2详解】以B为原点BE为x轴,为y轴,BA为E轴建立空间直角坐标系,如图所示,,,,,,设平面的法向量为.则即∴,又∵平面ABE的法向量为,∴,∴平面ABE与平面夹角的余弦值为.18、(1);(2)在单调递减,在单调递增【解析】(1)求出函数的导数,求出切线的斜率,切点坐标,然后求解切线方程;(2)利用导函数的符号,判断函数的单调性,求解函数的单调区间即可【详解】解:(1)由得,所以切线斜率为切点坐标为,所以切线方程为,即;(2),令,得当时,;当时,,∴在单调递减,在单调递增19、(1);(2)证明见解析.【解析】(1)根据椭圆的离心率公式,结合代入法进行求解即可;(2)根据角平分线的性质,结合一元二次方程根与系数关系、斜率公式进行求解即可.【小问1详解】椭圆的离心率,又,∴∵椭圆C:经过点,解得,∴椭圆C的方程为;【小问2详解】∵∠MPN的角平分线总垂直于y轴,∴MP与NP所在直线关于直线对称.设直线MP的斜率为k,则直线NP的斜率为∴设直线MP的方程为,直线NP的方程为设点,由消去y,得∵点在椭圆C上,则有,即同理可得∴,又∴直线MN的斜率为【点睛】关键点睛:由∠MPN的角平分线总垂直于y轴,得到MP与NP所在直线关于直线对称是解题的关键.20、(1);(2)证明见解析.【解析】(1)对函数求导,把问题转化为导函数值为0的方程有两个正根,再构造函数求解作答.(2)将所证不等式等价转化,构造函数,利用导数探讨其单调性作答.【小问1详解】函数的定义域为,求导得:,依题意,函数在上有两个不同极值点,于是得有两个不等的正根,令,,则,当时,,当时,,于是得在上单调递增,在上单调递减,,因,恒成立,即当时,的值从递减到0(不能取0),又,有两个不等的正根等价于直线与函数的图象有两个不同的公共点,如图,因此有,所以a取值范围是.【小问2详解】由(1)知分别是方程的两个不等的正根,,即,作差得,则有,原不等式,令,则,于是得,设,则,因此,在单调递增,则有,即成立,所以.【点睛】关键点睛:涉及不等式恒成立问题,将给定不等式等价转化,构造函数,利用函数思想是解决问题的关键.21、(1)数列,,,不具有性质;(2)证明见解析;(3)可能取值只有.【解析】(1)由数列具有性质的定义,只需判断存在与都不是数列中的项即可.(2)由性质知:、,结合非负递增性有,再由时,必有,进而可得,,,,,应用累加法即可证结论.(3)讨论、、,结合性质、等差数列的性质判断是否存在符合题设性质,进而确定的可能取值.【小问1详解】数列,,,不具有性质.因为,,和均不是数列,,,中的项,所以数列,,,不具有性质.【小问2详解】记数列的各项组成的集合为,又,由数列具有性质,,所以,即,所以.设,因为,所以.又,则,,,,.将上面的式子相加得:.所以.【小问3详解】(i)当时,由(2)知,,,这与数列不是等差数列矛盾,不合题意.(ii)当时,存在数列,,,,符合题意,故可取.(iii)当时,由(2)知,.①当时,,所以,.又,,∴,,,,即.由,,得:,,∴.②由①②两式相减得:,这与数列不是等差数列矛盾,不合题意.综上,满足题设的的可能取值只有.【点睛】关键点点睛:第二问,由可知,并应用累加法求证结论;第三问,讨论k的取值,结合的性质,由性质、等差数列的性质判断不同k的取值情况下数列的存在性即可.22、(1);(2)【解析】(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论