娄底市重点中学2024届数学高二上期末质量跟踪监视试题含解析_第1页
娄底市重点中学2024届数学高二上期末质量跟踪监视试题含解析_第2页
娄底市重点中学2024届数学高二上期末质量跟踪监视试题含解析_第3页
娄底市重点中学2024届数学高二上期末质量跟踪监视试题含解析_第4页
娄底市重点中学2024届数学高二上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

娄底市重点中学2024届数学高二上期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.“至少有1个白球”和“都是红球”B.“至少有2个白球”和“至多有1个红球”C.“恰有1个白球”和“恰有2个白球”D.“至多有1个白球”和“都是红球”2.在等比数列{an}中,a1=8,a4=64,则a3等于()A.16 B.16或-16C.32 D.32或-323.设、分别是椭圆()的左、右焦点,过的直线l与椭圆E相交于A、B两点,且,则的长为()A. B.1C. D.4.已知动点在直线上,过点作圆的切线,切点为,则线段的长度的最小值为()A. B.4C. D.5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线的距离为()A. B.C. D.6.在正四面体中,棱长为2,且E是棱AB中点,则的值为A. B.1C. D.7.两个圆和的位置是关系是()A.相离 B.外切C.相交 D.内含8.已知抛物线上的点到其准线的距离为,则()A. B.C. D.9.已知双曲线,过其右焦点作渐近线的垂线,垂足为,延长交另一条渐近线于点A.已知为原点,且,则()A. B.C. D.10.已知函数及其导函数,若存在使得,则称是的一个“巧值点”.下列选项中没有“巧值点”的函数是()A. B.C. D.11.已知公比不为1的等比数列,其前n项和为,,则()A.2 B.4C.5 D.2512.某中学高一年级有200名学生,高二年级有260名学生,高三年级有340名学生,为了了解该校高中学生完成作业情况,现用分层抽样的方法抽取一个容量为40的样本,则高二年级抽取的人数为()A.10 B.13C.17 D.26二、填空题:本题共4小题,每小题5分,共20分。13.已知.若在定义域内单调递增,则实数的取值范围为______.14.若点为圆上的一个动点,则点到直线距离的最大值为________15.已知某次数学期末试卷中有8道4选1的单选题16.函数仅有一个零点,则实数的取值范围是_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱柱中,,,,四边形为菱形,在平面ABCD内的射影O恰好为AD的中点,M为AB的中点.(1)求证:平面;(2)求平面与平面夹角的余弦值.18.(12分)已知椭圆的离心率为,短轴端点到焦点的距离为2(1)求椭圆的方程;(2)设为椭圆上任意两点,为坐标原点,且以为直径的圆经过原点,求证:原点到直线的距离为定值,并求出该定值19.(12分)已知函数(1)解不等式;(2)若不等式对恒成立,求实数m的取值范围20.(12分)已知函数在处取得极值(1)若对任意正实数,恒成立,求实数的取值范围;(2)讨论函数的零点个数21.(12分)圆经过两点,且圆心在直线上.(1)求圆的方程;(2)求圆与圆的公共弦的长.22.(10分)已知椭圆(a>b>0)的右焦点为F2(3,0),离心率为e.(1)若e=,求椭圆的方程;(2)设直线y=kx与椭圆相交于A,B两点,M,N分别为线段AF2,BF2的中点,若坐标原点O在以MN为直径的圆上,且<e≤,求k的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】结合互斥事件与对立事件的概念,对选项逐个分析可选出答案.【详解】对于选项A,“至少有1个白球”和“都是红球”是对立事件,不符合题意;对于选项B,“至少有2个白球”表示取出2个球都是白色的,而“至多有1个红球”表示取出的球1个红球1个白球,或者2个都是白球,二者不是互斥事件,不符合题意;对于选项C,“恰有1个白球”表示取出2个球1个红球1个白球,与“恰有2个白球”是互斥而不对立的两个事件,符合题意;对于选项D,“至多有1个白球”表示取出的2个球1个红球1个白球,或者2个都是红球,与“都是红球”不是互斥事件,不符合题意.故选C.【点睛】本题考查了互斥事件和对立事件的定义的运用,考查了学生对知识的理解和掌握,属于基础题.2、C【解析】首先根据a4=a1q3,求得q=2,再由a3=即可得解.【详解】由a4=a1q3,得q3=8,即q=2,所以a3==32.故选:C3、C【解析】由椭圆的定义得:,,结合条件可得,即可得答案.【详解】由椭圆的定义得:,,又,,所以,由椭圆知,所以.故选:C4、A【解析】求出的最小值,由切线长公式可结论【详解】解:由,得最小时,最小,而,所以故选:A.5、B【解析】由题意可知圆心在第一象限,设圆心的坐标为,可得圆的半径为,写出圆的标准方程,利用点在圆上,求得实数的值,利用点到直线的距离公式可求出圆心到直线的距离.【详解】由于圆上的点在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为,则圆的半径为,圆的标准方程为.由题意可得,可得,解得或,所以圆心的坐标为或,圆心到直线的距离均为;圆心到直线的距离均为圆心到直线的距离均为;所以,圆心到直线的距离为.故选:B.【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.6、A【解析】根据题意,由正四面体的性质可得:,可得,由E是棱中点,可得,代入,利用数量积运算性质即可得出.【详解】如图所示由正四面体的性质可得:可得:是棱中点故选:【点睛】本题考查空间向量的线性运算,考查立体几何中的垂直关系,考查转化与化归思想,属于中等题型.7、C【解析】根据圆的方程得出两圆的圆心和半径,再得出圆心距离与两圆的半径的关系,可得选项.【详解】圆的圆心为,半径,的圆心为,半径,则,所以两圆的位置是关系是相交,故选:C.【点睛】本题考查两圆的位置关系,关键在于运用判定两圆的位置关系一般利用几何法.即比较圆心之间的距离与半径之和、之差的大小关系,属于基础题.8、C【解析】首先根据抛物线的标准方程的形式,确定的值,再根据焦半径公式求解.【详解】,,因为点到的准线的距离为,所以,得故选:C9、C【解析】画出图象,结合渐近线方程得到,,进而得到,结合渐近线的斜率及角度关系,列出方程,求出,从而求出.【详解】渐近线为,如图,过点F作FB垂直于点B,交于点A,则到渐近线距离为,则,又,由勾股定理得:,则,又,,所以,解得:,所以.故选:C10、C【解析】利用新定义:存在使得,则称是的一个“巧点”,对四个选项中的函数进行一一的判断即可【详解】对于A,,则,令,解得或,即有解,故选项A的函数有“巧值点”,不符合题意;对于B,,则,令,令,则g(x)在x>0时为增函数,∵(1),(e),由零点的存在性定理可得,在上存在唯一零点,即方程有解,故选项B的函数有“巧值点”,不符合题意;对于C,,则,令,故方程无解,故选项C的函数没有“巧值点”,符合题意;对于D,,则,令,则.∴方程有解,故选项D的函数有“巧值点”,不符合题意故选:C11、B【解析】设等比数列的公比为,根据求得,从而可得出答案.【详解】解:设等比数列的公比为,则,所以,则.故选:B.12、B【解析】计算出抽样比可得答案.【详解】该校高中学生共有名,所以高二年级抽取的人数名.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】将问题转化为在上恒成立,再分离参数转化为求函数的最值问题即可得到实数的取值范围【详解】因为,所以;因为在内单调递增,所以在上恒成立,即在上恒成立,因为,所以.故答案为:14、7【解析】根据给定条件求出圆C的圆心C到直线l的距离即可计算作答.【详解】圆的圆心,半径,点C到直线的距离,所以圆C上点P到直线l距离的最大值为.故答案为:715、##0.84375【解析】合理设出事件,利用全概率公式进行求解.【详解】设小王从这8题中任选1题,且作对为事件A,选到能完整做对的5道题为事件B,选到有思路的两道题为事件C,选到完全没有思路为事件D,则,,,由全概率公式可得:PA=PB故答案为:16、【解析】根据题意求出函数的导函数并且通过导数求出原函数的单调区间,进而得到原函数的极值,因为函数仅有一个零点,所以结合函数的性质可得函数的极大值小于或极小值大于,即可得到答案.【详解】解:由题意可得:函数,所以,令,则或,令,则,所以函数的单调增区间为和,减区间为所以当时函数有极大值,当时函数有极小值,,因为函数仅有一个零点,,所以或,解得或.所以实数的取值范围是故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)先证明,,即可证明平面;(2)建立空间直角坐标系,利用向量法求解即可.【小问1详解】因为O为在平面ABCD内的射影,所以平面ABCD,因为平面ABCD,所以.如图,连接BD,在中,.设CD的中点为P,连接BP,因为,,,所以,且,则.因为,所以,易知,所以.因为平面,平面,,所以平面.【小问2详解】由(1)知平面ABCD,所以可以点O为坐标原点,以OA,,所在直线分别为x,z,以平面ABCD内过点O且垂直于OA的直线为y轴,建立如图所示的空间直角坐标系,则,,,,,所以,,,,设平面的法向量为,,,则可取平面的一个法向量为.设平面的法向量为,,,则令,得平面的一个法向量为.设平面与平面的平面角为,由法向量的方向可知与法向量的夹角大小相等,所以,所以平面与平面夹角的余弦值为.18、(1)(2)证明见解析,定值为【解析】(1)根据题意得到,,得到椭圆方程.(2)考虑直线斜率存在和不存在两种情况,联立方程,根据韦达定理得到根与系数的关系,将题目转化为,化简得到,代入计算得到答案.【小问1详解】椭圆的离心率为,短轴端点到焦点的距离为,故,,故椭圆方程为.【小问2详解】当直线斜率存在时,设直线方程为,,,则,即,,以为直径的圆经过原点,故,即,即,化简整理得到:,原点到直线的距离为.当直线斜率不存在时,为等腰直角三角形,设,则,解得,即直线方程为,到原点的距离为.综上所述:原点到直线的距离为定值.【点睛】本题考查了椭圆方程,椭圆中的定值问题,意在考查学生的计算能力,转化能力和综合应用能力,其中将圆过原点转化为是解题的关键.19、(1)(2)【解析】(1)移项,两边平方即可获解;(2)利用绝对值不等式即可.【小问1详解】即即,即即即或所以不等式的解集为【小问2详解】由题知对恒成立因为.所以,解得即或,所以实数的取值范为20、(1)(2)答案见解析.【解析】(1)根据极值点求出,再利用导数求出的最大值,将不等式恒成立化为最大值成立可求出结果;(2)利用导数求出函数的极大、极小值,结合函数的图象分类讨论可得结果.【小问1详解】函数的定义域为,因为,且在处取得极值,所以,即,得,此时,当时,,为增函数;当时。,为减函数,所以在处取得极大值,也是最大值,最大值为,因为对任意正实数,恒成立,所以,得.【小问2详解】,,由,得,由,得或,所以在上为增函数,在上为减函数,在上为增函数,所以在时取得极大值为,在时取得极小值为,因为当大于0趋近于0时,趋近于负无穷,当趋近于正无穷时,趋近于正无穷,所以当,即时,有且只有一个零点;当,即时,有且只有两个零点;当,即时,有且只有三个零点;当,即时,有且只有两个零点;当,即时,有且只有一个零点.综上所述:当或时,有且只有一个零点;当或时,有且只有两个零点;当时有且只有三个零点.21、(1)(2)【解析】(1)设圆的方程为,代入所过的点后可求,从而可求圆的方程.(2)利用两圆的方程可求公共弦的方程,利用垂径定理可求公共弦的弦长.【小问1详解】设圆的方程为,,,所以圆的方程为;【小问2详解】由圆的方程和圆的方程可得公共弦的方程为:,整理得到:,到公共弦距离为,故公共弦的弦长为:.22、(1);(2)【解析】(1)根据右焦点为F2(3,0),以及,求得a,b,c即可.(2)联立,根据M,N分别为线段AF2,BF2中点,且坐标原点O在以MN为直径的圆上,易得OM⊥ON,则四边形OMF2N为矩形,从而AF2⊥BF2,然后由0,结合韦达定理求解.【详解】(1)由题意得c=3,,所以.又因为a2=b2+c2,所以b2=3.所以椭圆的方程为.(2)由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论