山东省德州市夏津第一中学2024届高二上数学期末学业水平测试模拟试题含解析_第1页
山东省德州市夏津第一中学2024届高二上数学期末学业水平测试模拟试题含解析_第2页
山东省德州市夏津第一中学2024届高二上数学期末学业水平测试模拟试题含解析_第3页
山东省德州市夏津第一中学2024届高二上数学期末学业水平测试模拟试题含解析_第4页
山东省德州市夏津第一中学2024届高二上数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省德州市夏津第一中学2024届高二上数学期末学业水平测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设村庄外围所在曲线的方程可用表示,村外一小路所在直线方程可用表示,则从村庄外围到小路的最短距离为()A. B.C. D.2.若曲线f(x)=x2的一条切线l与直线平行,则l的方程为()A.4x-y-4=0 B.x+4y-5=0C.x-4y+3=0 D.4x+y+4=03.有7名同学参加百米竞赛,预赛成绩各不相同,取前3名参加决赛,小明同学已经知道了自己的成绩,为了判断自己是否能进入决赛,他还需要知道7名同学成绩的()A.平均数 B.众数C.中位数 D.方差4.已知点是椭圆上的一点,点,则的最小值为A. B.C. D.5.某市统计局网站公布了2017年至2020年该市政府部门网站的每年的两项访问量,数据如下:年度项目2017年2018年2019年2020年独立用户访问总量(单位:个)2512573924400060989网站总访问量(单位:次)23435370348194783219288下列表述中错误的是()A.2017年至2018年,两项访问量都增长幅度较大;B.2018年至2019年,两项访问量都有所回落;C.2019年至2020年,两项访问量都又有所增长;D.从数据可以看出,该市政府部门网站的两项访问量都呈逐年增长态势6.若曲线表示圆,则m的取值范围是()A. B.C. D.7.为了了解1200名学生对学校某项教改实验的意见,打算从中抽取一个容量为40的样本,采用系统抽样方法,则分段的间隔为()A.40 B.30C.20 D.128.已知随机变量服从正态分布,若,则()A.0.2 B.0.24C.0.28 D.0.329.直线的倾斜角的取值范围是()A. B.C. D.10.若,则的虚部为()A. B.C. D.11.若圆上恰有2个点到直线的距离为1,则实数的取值范围为()A B.C. D.12.已知点在抛物线:上,点为抛物线的焦点,,点P到y轴的距离为4,则抛物线C的方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列的前项和为,若,,则数列的前2021项和为___________.14.以点为圆心,且与直线相切的圆的方程是____________15.函数在上的最大值为______________16.若实数x,y满足约束条件,则的最大值是_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前项和(1)求数列的通项公式;(2)求数列的前项和18.(12分)排一张有6个歌唱节目和5个舞蹈节目的演出节目单.(1)任何两个舞蹈节目不相邻的排法有多少种?(2)歌唱节目与舞蹈节目间隔排列的方法有多少种?19.(12分)已知函数,.(1)若,求曲线在点处的切线方程;(2)若函数在上是减函数,求实数的取值范围.20.(12分)内角A,B,C的对边分别为a,b,c,已知(1)求B;(2)若,且是锐角三角形,求c的值21.(12分)设函数(1)求在处的切线方程;(2)求在上的最大值与最小值22.(10分)已知抛物线与直线相切.(1)求该抛物线的方程;(2)在轴的正半轴上,是否存在某个确定的点M,过该点的动直线与抛物线C交于A,B两点,使得为定值.如果存在,求出点M的坐标;如果不存在,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求出圆心到直线距离,减去半径即为答案.【详解】圆心到直线的距离,则从村庄外围到小路的最短距离为故选:B2、D【解析】设切点为,则切线的斜率为,然后根据条件可得的值,然后可得答案.【详解】设切点为,因为,所以切线的斜率为因为曲线f(x)=x2的一条切线l与直线平行,所以,即所以l的方程为,即故选:D3、C【解析】根据中位数的性质,结合题设按成绩排序7选3,即可知还需明确的成绩数据信息.【详解】由题设,7名同学参加百米竞赛,要取前3名参加决赛,则成绩从高到低排列,确定7名同学成绩的中位数,即第3名的成绩便可判断自己是否能进入决赛.故选:C.4、D【解析】设,则,.所以当时,的最小值为.故选D.5、D【解析】根据表格数据,结合各选项的描述判断正误即可.【详解】A:2017年至2018年,两项访问量分别增长、,显然增长幅度相较于后两年是最大的,正确;B:2018年至2019年,两项访问量相较于2017年至2018年都有回落,正确;C:2019年至2020年,两项访问量分别增长、,正确;D:由B分析知,该市政府部门网站的两项访问量在2018年至2019年有回落,而不是逐年增长态势,错误.故选:D.6、C【解析】按照圆的一般方程满足的条件求解即可.【详解】或.故选:C.7、B【解析】根据系统抽样的概念,以及抽样距的求法,可得结果.【详解】由总数为1200,样本容量为40,所以抽样距为:故选:B【点睛】本题考查系统抽样的概念,属基础题.8、C【解析】依据正态曲线的对称性即可求得【详解】由随机变量服从正态分布,可知正态曲线的对称轴为直线由,可得则,故故选:C9、A【解析】由直线方程求得直线斜率的范围,再由斜率等于倾斜角的正切值可得直线的倾斜角的取值范围.【详解】∵直线的斜率,,设直线的倾斜角为,则,解得.故选:A.10、A【解析】根据复数的运算化简,由复数概念即可求解.【详解】因为,所以的虚部为,故选:A11、A【解析】求得圆心到直线的距离,根据题意列出的不等关系式,即可求得的范围.【详解】因为圆心到直线的距离,故要满足题意,只需,解得.故选:A.12、D【解析】由抛物线定义可得,注意开口方向.详解】设∵点P到y轴的距离是4∴∵,∴.得:.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题意求出,代入中,再利用裂项相消即可求出答案.【详解】由是等差数列且,可知:,故.,数列的前2021项和为.故答案为:.14、【解析】根据直线与圆相切,圆心到直线距离等于半径,由点到直线的距离公式求出半径,然后可得.【详解】圆心到直线的距离,又圆与直线相切,所以,所以圆的方程为.故答案为:15、【解析】对原函数求导得,令,解得或,且所以原函数在上的最大值为考点:1.函数求导;2.利用导函数求最值16、##【解析】画出可行域,通过平移基准直线到可行域边界位置,由此求得的最大值.【详解】,画出可行域如下图所示,由图可知,平移基准直线到点时,取得最大值为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用与的关系求数列的通项公式;(2)利用错位相减法求和即可.【小问1详解】因为,故当时,,两式相减得,又由题设可得,从而的通项公式为:;【小问2详解】因为,,两式相减得:所以.18、(1)(2)【解析】(1)用插空法,现排唱歌,利用产生的空排跳舞;(2)先排唱歌再排舞蹈.【小问1详解】解:先排歌唱节目有种,歌唱节目之间以及两端共有7个空位,从中选5个放入舞蹈节目,共有种方法,所以任何两个舞蹈节目不相邻的排法有种方法.【小问2详解】解:先排舞蹈节目有种方法,在舞蹈节目之间以及两端共有6个空位,恰好供6个歌唱节目放入.所以歌唱节目与舞蹈节目间隔排列的排法有种方法.19、(1).(2).【解析】分析:(1)由和可由点斜式得切线方程;(2)由函数在上是减函数,可得在上恒成立,,由二次函数的性质可得解.详解:(1)当时,所以,所以曲线在点处的切线方程为.(2)因为函数在上是减函数,所以在上恒成立.做法一:令,有,得故.实数的取值范围为做法二:即在上恒成立,则在上恒成立,令,显然在上单调递减,则,得实数的取值范围为点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;(3)若恒成立,可转化为(需在同一处取得最值).20、(1)或(2)【解析】(1)利用正弦定理边化角,然后可解;(2)利用余弦定理求出c,然后检验可得.【小问1详解】,即或【小问2详解】因为是锐角三角形,所以因为所以由余弦定理得:即,解得或若,则,所以,不满足题意;若,因为,且,所以,此时是锐角三角形.所以.21、(1)(2),【解析】(1)对函数求导,然后求出,,运用点斜式即可求出切线方程;(2)利用导数研究出函数在区间的单调性,即可求出函数在区间上的最大值与最小值【小问1详解】,,,所以在点处的切线方程为,即.【小问2详解】,因为,所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论