辽宁省四校2023-2024学年高二上数学期末考试模拟试题含解析_第1页
辽宁省四校2023-2024学年高二上数学期末考试模拟试题含解析_第2页
辽宁省四校2023-2024学年高二上数学期末考试模拟试题含解析_第3页
辽宁省四校2023-2024学年高二上数学期末考试模拟试题含解析_第4页
辽宁省四校2023-2024学年高二上数学期末考试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省四校2023-2024学年高二上数学期末考试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“五一”期间,甲、乙、丙三个大学生外出旅游,已知一人去北京,一人去两安,一人去云南.回来后,三人对去向作了如下陈述:甲:“我去了北京,乙去了西安.”乙:“甲去了西安,丙去了北京.”丙:“甲去了云南,乙去了北京.”事实是甲、乙、丙三人陈述都只对了一半(关于去向的地点仅对一个).根据以上信息,可判断下面说法中正确的是()A.甲去了西安 B.乙去了北京C.丙去了西安 D.甲去了云南2.直线的方向向量为()A. B.C. D.3.双曲线的渐近线方程为A. B.C. D.4.已知命题:△中,若,则;命题:函数,,则的最大值为.则下列命题是真命题的是()A. B.C. D.5.已知椭圆的焦点分别为,,椭圆上一点P与焦点的距离等于6,则的面积为()A.24 B.36C.48 D.606.某次生物实验6个小组的耗材质量(单位:千克)分别为1.71,1.58,1.63,1.43,1.85,1.67,则这组数据的中位数是()A.1.63 B.1.67C.1.64 D.1.657.过点且平行于直线的直线方程为()A. B.C. D.8.《九章算术》与《几何原本》并称现代数学的两大源泉.在《九章算术》卷五商功篇中介绍了羡除(此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体)体积的求法.在如图所示的羡除中,平面是铅垂面,下宽,上宽,深,平面BDEC是水平面,末端宽,无深,长(直线到的距离),则该羡除的体积为()A. B.C. D.9.设抛物线的焦点为F,过点F且垂直于x轴的直线与抛物线C交于A,B两点,若,则()A1 B.2C.4 D.810.直线的倾斜角为()A.30° B.60°C.90° D.120°11.命题“,”的否定是()A., B.,C., D.,12.已知双曲线的右焦点为,渐近线为,,过的直线与垂直,且交于点,交于点,若,则双曲线的离心率为()A. B.C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.圆锥的母线长为2,母线所在直线与圆锥的轴所成角为,则该圆锥的侧面积大小为____________.(结果保留)14.若直线是曲线的切线,也是曲线的切线,则__________15.已知,是双曲线的两个焦点,以线段为边作正,若边的中点在双曲线上,则双曲线的离心率____________.16.若圆心坐标为圆被直线截得的弦长为,则圆的半径为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线:上的点到其准线的距离为5.(1)求抛物线的方程;(2)已知为原点,点在抛物线上,若的面积为6,求点的坐标.18.(12分)已知直线与圆.(1)当直线l恰好平分圆C的周长时,求m的值;(2)当直线l被圆C截得的弦长为时,求m的值.19.(12分)已知数列为各项均为正数的等比数列,若(1)求数列的通项公式;(2)求数列的前n项和20.(12分)已知圆C过两点,,且圆心C在直线上(1)求圆C的方程;(2)过点作圆C的切线,求切线方程21.(12分)已知数列是等差数列,(1)求的通项公式;(2)求的最大项22.(10分)已知直线,,,其中与的交点为P(1)求过点P且与平行的直线方程;(2)求以点P为圆心,截所得弦长为8的圆的方程

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据题意,先假设甲去了北京正确,则可分析其他人的陈述是否符合题意,再假设乙去西安正确,分析其他人的陈述是否符合题意,即可得答案.【详解】由题意得,甲、乙、丙三人的陈述都只对了一半,假设甲去了北京正确,对于甲的陈述:则乙去西安错误,则乙去了云南;对于乙的陈述:甲去了西安错误,则丙去了北京正确;对于丙的陈述:甲去了云南错误,乙去了北京也错误,故假设错误.假设乙去了西安正确,对于甲的陈述:则甲去了北京错误,则甲去了云南;对于乙的陈述:甲去了西安错误,则丙去了北京正确;对于丙的陈述:甲去了云南正确,乙去了北京错误,此种假设满足题意,故甲去了云南.故选:D2、D【解析】根据直线方程,求得斜率k,分析即可得直线的方向向量.【详解】直线变形可得,所以直线的斜率,所以向量为直线的一个方向向量,因为,所以向量为直线的方向向量,故选:D3、A【解析】根据双曲线的渐近线方程知,,故选A.4、A【解析】由三角形内角及正弦函数的性质判断、的真假,应用换元法令,结合对勾函数的性质确定的值域即知、的真假,根据各选项复合命题判断真假即可.【详解】由且,可得或,故为假命题,为真命题;令,又,则,故,∵在上递减,∴,故的最大值为.∴为真命题,为假命题;∴为真,为假,为假,为假.故选:A.5、A【解析】由题意可得出与、、的值,在根据椭圆定义得的值,即可得到是直角三角形,即可求出的面积.【详解】由题意知,.根据椭圆定义可知,是直角三角形,.故选:A.6、D【解析】将已有数据从小到大排序,根据中位数的定义确定该组数据的中位数.【详解】由题设,将数据从小到大排序可得:,∴中位数为.故选:D.7、A【解析】设直线的方程为,代入点的坐标即得解.【详解】解:设直线的方程为,把点坐标代入直线方程得.所以所求的直线方程为.故选:A8、C【解析】在,上分别取点,,使得,连接,,,把几何体分割成一个三棱柱和一个四棱锥,然后由棱柱、棱锥体积公式计算【详解】如图,在,上分别取点,,使得,连接,,,则三棱柱是斜三棱柱,该羡除的体积三棱柱四棱锥.故选:C【点睛】思路点睛:本题考查求空间几何体的体积,解题思路是观察几何体的结构特征,合理分割,将不规则几何体体积的计算转化为锥体、柱体体积的计算.考查了空间想象能力、逻辑思维能力、运算求解能力9、C【解析】根据焦点弦的性质即可求出【详解】依题可知,,所以故选:C10、B【解析】根据给定方程求出直线斜率,再利用斜率的定义列式计算得解.【详解】直线的斜率,设其倾斜角为,显然,则有,解得,直线的倾斜角为.故选:B11、D【解析】根据含一个量词的命题的否定方法:修改量词,否定结论,直接得到结果.【详解】命题“,”的否定是“,”.故选:D12、C【解析】由题设易知是的中垂线,进而可得,结合双曲线参数关系及离心率公式求双曲线的离心率即可.【详解】由题意,是的中垂线,故,由对称性得,则,故,∴.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题设知:圆锥的轴截面为等边三角形,进而求圆锥的底面周长,由扇形面积公式求圆锥的侧面积大小.【详解】由题设,圆锥的轴截面为等边三角形,又圆锥的母线长为2,∴底面半径为1,则底面周长为,∴圆锥的侧面积大小为.故答案为:.14、【解析】根据导数的几何意义,结合待定系数法进行求解即可.【详解】设曲线的切点为:,由,所以过该切点的切线斜率为:,于切线方程为:,因此有:,设曲线的切点为:,由,所以过该切点的切线斜率为:,于是切线方程为:,因此有:,因为,,即,因此,故答案为:【点睛】关键点睛:根据导数的几何意义进行求解是解题的关键.15、##【解析】根据线段为边作正,得到M在y轴上,求得M的坐标,再由,得到边的中点坐标,代入双曲线方程求解.【详解】以线段为边作正,则M在y轴上,设,则,因为,所以边的中点坐标为,因为边的中点在双曲线上,所以,因为,所以,即,解得,因为,所以,故答案为:16、【解析】利用垂径定理计算即可.【详解】设圆的半径为,则,得.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)结合抛物线的定义求得,由此求得抛物线的方程.(2)设,根据三角形的面积列方程,求得的值,进而求得点的坐标.【小问1详解】由抛物线的方程可得其准线方程,依抛物线的性质得,解得.∴抛物线的方程为.【小问2详解】将代入,得.所以,直线的方程为,即.设,则点到直线的距离,又,由题意得,解得或.∴点的坐标是或.18、(1);(2)1.【解析】(1)将圆C的圆心坐标代入直线l的方程计算作答.(2)由给定条件求出圆心C到直线l的距离,再利用点到直线距离公式计算作答.【小问1详解】圆的圆心,半径,因直线l平分圆C的周长,则直线l过圆心,即,解得,所以m的值是.【小问2详解】由(1)知,圆C的圆心,半径,因直线l被圆C截得的弦长为,则有圆心C到直线l的距离,因此,,解得,所以m的值是1.19、(1)(2)【解析】(1)利用等比数列通项公式列出方程组,可求解,,从而写出;(2)化简数列,裂项相消法求和即可.【小问1详解】设数列的公比为,∵,∴,即①∵,∴②②÷①,解得∴∴【小问2详解】∵,∴∴∴20、(1).(或标准形式)(2)或【解析】(1)根据题意,求出中垂线方程,与直线联立,可得圆心的坐标,求出圆的半径,即可得答案;(2)分切线的斜率存在与不存在两种情况讨论,求出切线的方程,综合可得答案【小问1详解】解:根据题意,因为圆过两点,,设的中点为,则,因为,所以的中垂线方程为,即又因为圆心在直线上,联立,解得,所以圆心,半径,故圆的方程为,【小问2详解】解:当过点P的切线的斜率不存在时,此时直线与圆C相切当过点P的切线斜率k存在时,设切线方程为即(*)由圆心C到切线的距离,可得将代入(*),得切线方程为综上,所求切线方程为或21、(1);(2).【解析】(1)利用等差数列的通项公式进行求解即可;(2)运用二次函数的性质进行求解即可.【小问1详解】设等差数列的公差为,所以有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论