版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古乌拉特前旗第六中学2023年数学高二上期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.九连环是我国从古至今广为流传的一种益智游戏,它由九个铁丝圆环相连成串,按一定规则移动圆环的次数决定解开圆环的个数.在某种玩法中,用表示解开n(,)个圆环所需的最少移动次数,若数列满足,且当时,则解开5个圆环所需的最少移动次数为()A.10 B.16C.21 D.222.已知曲线的方程为,则下列说法正确的是()①曲线关于坐标原点对称;②曲线是一个椭圆;③曲线围成区域的面积小于椭圆围成区域的面积.A.① B.①②C.③ D.①③3.与直线关于轴对称的直线的方程为()A. B.C. D.4.顶点在原点,关于轴对称,并且经过点的抛物线方程为()A. B.C. D.5.某家大型超市近10天的日客流量(单位:千人次)分别为:2.5、2.8、4.4、3.6.下列图形中不利于描述这些数据的是()A.散点图 B.条形图C.茎叶图 D.扇形图6.下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,如果输入a=102,b=238,则输出的a的值为()A.17 B.34C.36 D.687.已知点是抛物线的焦点,点为抛物线上的任意一点,为平面上点,则的最小值为A.3 B.2C.4 D.8.已知等差数列的前项和为,且,,则()A.3 B.5C.6 D.109.设双曲线:(,)的右顶点为,右焦点为,为双曲线在第二象限上的点,直线交双曲线于另一个点(为坐标原点),若直线平分线段,则双曲线的离心率为()A. B.C. D.10.的内角A,B,C的对边分别为a,b,c,若,则一定是()A.等边三角形 B.等腰三角形C.直角三角形 D.等腰直角三角形11.“中国剩余定理”又称“孙子定理”.1852年英国来华传教士伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2021这2020个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列,则此数列的项数为()A. B.C. D.12.已知数列是等比数列,数列是等差数列,若,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.一条光线经过点射到直线上,被反射后经过点,则入射光线所在直线的方程为___________.14.直线被圆所截得的弦中,最短弦所在直线的一般方程是__________15.已知数列满足,,若,则_______16.设直线的方向向量分别为,若,则实数m等于___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线和的交点为P,求:(1)过点P且与直线垂直的直线l的方程;(2)以点P为圆心,且与直线相交所得弦长为12的圆的方程;(3)从下面①②两个问题中选一个作答,①若直线l过点,且与两坐标轴的正半轴所围成的三角形面积为,求直线l的方程②求圆心在直线上,与x轴相切,被直线截得的弦长的圆的方程注:如果选择两个问题分别作答,按第一个计分18.(12分)已知数列的前项和为,满足_______请在①;②,;③三个条件中任选一个,补充在上面的横线上,完成上述问题.注:若选择不同的条件分别解答,则按第一个解答计分(1)求数列的通项公式;(2)数列满足,求数列的前项和19.(12分)已知是等差数列,其n前项和为,已知(1)求数列的通项公式:(2)设,求数列的前n项和20.(12分)已知函数(1)讨论函数的单调性;(2)若对任意的,都有成立,求的取值范围21.(12分)已知函数.(1)当时,求的极值;(2)当时,,求a的取值范围.22.(10分)已知数列的首项,其前n项和为,且满足.(1)求数列的通项公式;(2)设,数列的前n项和为,且,求n.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据题意,结合数列递推公式,代入计算即可.【详解】根据题意,由,得.故选:D.2、D【解析】对于①在方程中换为,换为可判断;对于②分析曲线的图形是两个抛物线的部分组成的可判断;对于③在第一象限内,分析椭圆的图形与曲线图形的位置关系可判断.【详解】在曲线的方程中,换为,换为,方程不变,故曲线关于坐标原点对称所以①正确,当时,曲线的方程化为,此时当时,曲线的方程化为,此时所以曲线图形是两个抛物线的部分组成的,不是椭圆,故②不正确.当,时,设,设,则,(当且仅当或时等号成立)所以在第一象限内,椭圆的图形在曲线的上方.根据曲线和椭圆的的对称性可得椭圆的图形在曲线的外部(四个顶点在曲线上)所以曲线围成区域的面积小于椭圆围成区域的面积,故③正确.故选:D3、D【解析】点关于x轴对称,横坐标不变,纵坐标互为相反数,据此即可求解.【详解】设(x,y)是与直线关于轴对称的直线上任意一点,则(x,-y)在上,故,∴与直线关于轴对称的直线的方程为.故选:D.4、C【解析】根据题意,设抛物线的方程为,进而待定系数求解即可.【详解】解:由题,设抛物线的方程为,因为在抛物线上,所以,解得,即所求抛物线方程为故选:C5、A【解析】根据数据的特征以及各统计图表的特征分析即可;【详解】解:茎叶图、条形图、扇形图均能将数据描述出来,并且能够体现出数据的变化趋势;散点图表示因变量随自变量而变化的大致趋势,故用来描述该超市近10天的日客流量不是很合适;故选:A6、B【解析】根据程序框图所示代入运行即可.【详解】初始输入:;第一次运算:;第二次运算:;第三次运算:;第四次运算:;结束,输出34.故选:B.7、A【解析】作垂直准线于点,根据抛物线的定义,得到,当三点共线时,的值最小,进而可得出结果.【详解】如图,作垂直准线于点,由题意可得,显然,当三点共线时,的值最小;因为,,准线,所以当三点共线时,,所以.故选A【点睛】本题主要考查抛物线上任一点到两定点距离的和的最值问题,熟记抛物线的定义与性质即可,属于常考题型.8、B【解析】根据等差数列的性质,以及等差数列的前项和公式,由题中条件,即可得出结果.【详解】因为数列为等差数列,由,可得,,则.故选:B.【点睛】本题主要考查等差数列的性质,以及等差数列前项和的基本量运算,属于基础题型.9、A【解析】由给定条件写出点A,F坐标,设出点B的坐标,求出线段FC的中点坐标,由三点共线列式计算即得.【详解】令双曲线的半焦距为c,点,设,由双曲线对称性得,线段FC的中点,因直线平分线段,即点D,A,B共线,于是有,即,即,离心率.故选:A10、B【解析】利用余弦定理化角为边,从而可得出答案.【详解】解:因为,所以,则,所以,所以是等腰三角形.故选:B.11、C【解析】由题设且,应用不等式求的范围,即可确定项数.【详解】由题设,且,所以,可得且.所以此数列的项数为.故选:C12、A【解析】结合等差中项和等比中项分别求出和,代值运算化简即可.【详解】由是等比数列可得,是等差数列可得,所以,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求点关于直线的对称点,连接,则直线即为所求.【详解】设点关于直线的对称点为,则,解得,所以,又点,所以,直线的方程为:,由图可知,直线即为入射光线,所以化简得入射光线所在直线的方程:.故答案为:.14、【解析】先求出直线所过的定点,当该定点为弦的中点时弦长最短,利用点斜式求出直线方程,整理成一般式即可.【详解】即,令,解得即直线过定点圆的圆心为,半径为,最短弦所在直线的方程为整理得最短弦所在直线的一般方程是故答案为:.15、【解析】由递推式,结合依次求出、即可.【详解】由,可得:,又,可得:.故答案为:.16、2【解析】根据向量垂直与数量积的等价关系,,计算即可.【详解】因为,则其方向向量,,解得.故答案为:2.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)答案见解析【解析】(1)联立方程组求得交点的坐标,结合直线与直线垂直,求得直线的斜率为,利用直线的点斜式,即可求解;(2)先求得点到直线的距离为,由圆的的垂径定理列出方程求得圆的半径,即可求解;(3)若选①:设直线l的的斜率为,得到,结合题意列出方程,求得的值,即可求解;若选②,设所求圆的圆心为,半径为,得到,利用圆的垂径定理列出方程求得的值,即可求解.【小问1详解】解:由直线和的交点为P,联立方程组,解得,即,因为直线与直线垂直,所以直线的斜率为,所以过点且与直线垂直的直线方程为,即.【小问2详解】解:因为点到直线的距离为,设所求圆的半径为,由圆的的垂径定理得,弦长,解得,所以所求圆的方程为.【小问3详解】解:若选①:直线l过点,且与两坐标轴的正半轴所围成的三角形面积为,设直线l的的斜率为,可得直线的方程为,即,则直线与坐标轴的交点分别为,由,解得或,所以所求直线的方程为或.若选②,设所求圆的圆心为,半径为,因为圆与x轴相切,可得,又由圆心到直线的距离为,利用圆的垂径定理可得,即,解得,即圆心坐标为或,所以所求圆的方程为或.18、(1)条件选择见解析,;(2).【解析】(1)选①,可得出,由可求得数列的通项公式;选②,分析可知数列是公差为的等差数列,根据已知条件求出的值,利用等差数列的求和公式可求得数列的通项公式;选③,在等式中令可求得的值,即可得出数列的通项公式;(2)求得,利用裂项相消法可求得.【小问1详解】解:选①,因为,则,则,当时,,也满足,所以,对任意的,;选②,因为,则数列是公差为的等差数列,所以,,解得,则;选③,对任意的,,则,可得,因此,.【小问2详解】解:因为,因此,.19、(1);(2).【解析】(1)利用等差数列的基本量,结合已知条件,列出方程组,求得首项和公差,即可写出通项公式;(2)根据(1)中所求,结合裂项求和法,即可求得.【小问1详解】因为是等差数列,其n前项和为,已知,设其公差为,故可得:,,解得,又,故.【小问2详解】由(1)知,,又,故.即.20、(1)答案见解析;(2).【解析】(1)求,分别讨论不同范围下的正负,分别求单调性;(2)由(1)所求的单调性,结合,分别求出的范围再求并集即可.【详解】解:(1)由已知定义域为,当,即时,恒成立,则在上单调递增;当,即时,(舍)或,所以在上单调递减,在上单调递增.所以时,在上单调递增;时,在上单调递减,在上单调递增.(2)由(1)可知,当时,在上单调递增,若对任意的恒成立,只需,而恒成立,所以成立;当时,若,即,则在上单调递增,又,所以成立;若,则在上单调递减,在上单调递增,又,所以,,不满足对任意的恒成立.所以综上所述:.21、(1)极大值,没有极小值(2)【解析】(1)把代入,然后对函数求导,结合导数可求函数单调区间,即可得解;(2)构造函数,将不等式的恒成立转化为函数的最值问题,结合导数与单调性及函数的性质对进行分类讨论,其中当和时易判断函数的单调性以及最小值,而当时,的最小值与0进一步判断【小问1详解】当时,的定义域为,.当时,,当时,,所以在上为增函数,在上为减函数.故有极大值,没有极小值.【小问2详解】当时,恒成立等价于对于任意恒成立.令,则.若,则,所以在上单
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年标准化城市园林绿化工程承包合同版
- 2024年离婚财产合同标准格式一
- 区域合作协议范文
- 新兴主播经济的合作合同范本
- 2024年版现代化啤酒广场租赁合同一
- 2024年房地产土地中介合作协议版B版
- 国际贸易咨询服务协议书
- 科研项目组听课制度与管理
- 患者跌倒、坠床等意外事件的防范制度、措施、报告制度、处置预案、工作流程
- 2025家政保洁服务合同
- 房屋市政工程生产安全重大事故隐患判定标准(2024版)宣传海报
- 广东省深圳市宝安区2023-2024学年高三上学期期末考试数学试卷
- 《婴幼儿活动设计与指导》 课件-13-18月儿童亲子活动指导
- 2024年安全员A证考试题库及答案(1000题)
- 【MOOC】创新思维与创业实验-东南大学 中国大学慕课MOOC答案
- 广东省湛江市雷州市2023-2024学年四年级上学期语文期末试卷
- 面部设计美学培训
- 制冷原理与设备(上)知到智慧树章节测试课后答案2024年秋烟台大学
- 加工装配业务合作框架协议
- 2020年同等学力申硕《计算机科学与技术学科综合水平考试》历年真题及答案
- 公共体育(三)学习通超星期末考试答案章节答案2024年
评论
0/150
提交评论