拉萨市2023年数学高二上期末联考试题含解析_第1页
拉萨市2023年数学高二上期末联考试题含解析_第2页
拉萨市2023年数学高二上期末联考试题含解析_第3页
拉萨市2023年数学高二上期末联考试题含解析_第4页
拉萨市2023年数学高二上期末联考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

拉萨市2023年数学高二上期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在四面体OABC中,,,,点在线段上,且,为的中点,则等于()A. B.C. D.2.已知等比数列满足,,则数列前6项的和()A.510 B.126C.256 D.5123.已知圆:,点,则点到圆上点的最小距离为()A.1 B.2C. D.4.圆与圆的位置关系是()A.内含 B.相交C.外切 D.外离5.某高校甲、乙两位同学大学四年选修课程的考试成绩等级(选修课的成绩等级分为1,2,3,4,5,共五个等级)的条形图如图所示,则甲成绩等级的中位数与乙成绩等级的众数分别是()A.3,5 B.3,3C.3.5,5 D.3.5,46.已知圆的方程为,直线:恒过定点,若一条光线从点射出,经直线上一点反射后到达圆上的一点,则的最小值是()A.3 B.4C.5 D.67.在正方体中,为棱的中点,为棱的中点,则直线与平面所成角的正弦值为()A. B.C. D.8.如图,A,B,C三点不共线,O为平面ABC外一点,且平面ABC中的小方格均为单位正方形,,,则()A.1 B.C.2 D.9.设函数是奇函数的导函数,,当时,,则使得成立的的取值范围是A. B.C D.10.函数f(x)=xex的单调增区间为()A.(-∞,-1) B.(-∞,e)C.(e,+∞) D.(-1,+∞)11.已知命题p:“是方程表示椭圆”的充要条件;命题q:“是a,b,c成等比数列”的必要不充分条件,则下列命题为真命题的是()A. B.C. D.12.已知双曲线满足,且与椭圆有公共焦点,则双曲线的方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在2021件产品中有10件次品,任意抽取3件,则抽到次品个数的数学期望的值是______.14.如图,抛物线上的点与轴上的点构成等边三角形,,,其中点在抛物线上,点的坐标为,,猜测数列的通项公式为________15.双曲线的离心率为__________________.16.已知数列中,.若为等差数列,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,四边形为正方形,已知平面,且,E为中点(1)证明:平面;(2)证明:平面平面18.(12分)已知O为坐标原点,、为椭圆C的左、右焦点,,P为椭圆C的上顶点,以P为圆心且过、的圆与直线相切(1)求椭圆C的标准方程;(2)若过点作直线l,交椭圆C于M,N两点(l与x轴不重合),在x轴上是否存在一点T,使得直线TM与TN的斜率之积为定值?若存在,请求出所有满足条件的点T的坐标;若不存在,请说明理由19.(12分)已知直线,,,其中与交点为P(1)求过点P且与平行的直线方程;(2)求以点P为圆心,截所得弦长为8的圆的方程20.(12分)如图,在四棱锥中,底面是菱形,平面,,,分别为,的中点(1)证明:平面;(2)证明:平面21.(12分)在等差数列中,,前10项和(1)求列的通项公式;(2)若数列是首项为1,公比为2的等比数列,求的前8项和22.(10分)已知函数,(1)讨论的单调性;(2)若时,对任意都有恒成立,求实数的最大值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用空间向量的加法与减法可得出关于、、的表达式.【详解】.故选:D.2、B【解析】设等比数列的公比为,由题设条件,求得,再结合等比数列的求和公式,即可求解.【详解】设等比数列的公比为,因为,,可得,解得,所以数列前6项的和.故选:B.【点睛】本题主要考查了等比数列的通项公式,以及等比数列的前项和公式的应用,其中解答中熟记等比数列的通项公式和求和公式,准确计算是解答的关键,着重考查推理与运算能力.3、C【解析】写出圆的圆心和半径,求出距离的最小值,再结合圆外一点到圆上点的距离最小值的方法即可求解.【详解】由圆:,得圆,半径为,所以,所以点到圆上点的最小距离为.故选:C.4、C【解析】分别求出两圆的圆心、半径,再求出两圆的圆心距即可判断作答.【详解】圆的圆心,半径,圆,即的圆心,半径,则,即有,所以圆与圆外切.故选:C5、C【解析】将甲的所有选修课等级从低到高排列可得甲的中位数,由图可知乙的选修课等级的众数.【详解】由条形图可得,甲同学共有10门选修课,将这10门选修课的成绩等级从低到高排序后,第5,6门的成绩等级分别为3,4,故中位数为,乙成绩等级的众数为5.故选:C.6、B【解析】求得定点,然后得到关于直线对称点为,然后可得,计算即可.【详解】直线可化为,令解得所以点的坐标为.设点关于直线的对称点为,则由,解得,所以点坐标为.由线段垂直平分线的性质可知,,所以(当且仅当,,,四点共线时等号成立),所以的最小值为4.故选:B.7、D【解析】建立空间直角坐标系,计算平面的法向量,利用线面角的向量公式即得解【详解】不妨设正方体的棱长为2,连接,以为坐标原点如图建立空间直角坐标系,则,,,,,,由于平面,平面,故又正方形,故平面故平面,所以为平面的一个法向量,故直线与平面所成角正弦值为.故选:D8、B【解析】根据向量的线性运算,将向量表示为,再根据向量的数量积的运算进行计算可得答案,【详解】因为,所以=,故选:B.9、B【解析】构造函数,可知函数为奇函数,利用导数分析出函数在上的单调性,并得出,然后分别在和解不等式,由此可得出不等式的解集.【详解】构造函数,该函数的定义域为,由于函数为上的奇函数,则,所以,函数为上的奇函数,且,,.当时,,此时,函数单调递增,由,可得,解得;当时,则函数单调递增,由,可得,解得.综上所述,使得成立的的取值范围是.故选:B.【点睛】本题考查利用函数的单调性求解函数不等式,根据导数不等式的结构构造合适的函数是解题的关键,考查分析问题和解决问题的能力,属于中等题.10、D【解析】求出,令可得答案.【详解】由已知得,令,得,故函数f(x)=xex的单调增区间为(-1,+∞).故选:D.11、C【解析】先判断命题p,q的真假,从而判断的真假,再根据“或”“且”命题的真假判断方法,可得答案.【详解】当时,表示圆,故命题p:“是方程表示椭圆”的充要条件是假命题,命题q:“是a,b,c成等比数列”的必要不充分条件为真命题,则是真命题,是假命题,故是假命题,是假命题,是真命题,是假命题,故选:C12、A【解析】根据椭圆的标准方程求出,利用双曲线,结合建立方程求出,,即可求出双曲线的渐近线方程【详解】椭圆的标准方程为,椭圆中的,双曲线的焦点与椭圆的焦点相同,双曲线中,双曲线满足,即又在双曲线中,即,解得:,所以双曲线的方程为,故选:A【点睛】关键点点睛:本题主要考查双曲线方程的求解,根据椭圆和双曲线的关系建立方程求出,,是解决本题的关键,考查学生的计算能力,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设抽到的次品的个数为,则,求出对应的概率即得解.【详解】解:设抽到的次品的个数为,则,所以所以抽到次品个数的数学期望的值是故答案为:14、【解析】求出,,,,,,可猜测,利用累加法,即可求解【详解】的方程为,代入抛物线可得,同理可得,,,,可猜测,证明:记三角形的边长为,由题意可知,当时,在抛物线上,可得,当时,,两式相减得:化简得:,则数列是等差数列,,,,,故答案为:15、【解析】根据双曲线方程确定a,b,c的值,求出离心率.【详解】由双曲线可得:,故,故答案为:16、【解析】利用等差中项求解即可【详解】由为等差数列,则,解得故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)证明见解析【解析】(1)设与交于点,连结,易证,再利用线面平行的判断定理即可证得答案;(2)利用线面垂直的判定定理可得平面,再由面面垂直的判断定理即可.【小问1详解】连接交于,连接因为底面是正方形,所以为中点,因为在中,是的中点,所以,因为平面平面,所以平面【小问2详解】侧棱底面底面,所以,因为底面是正方形,所以,因为与为平面内两条相交直线,所以平面,因为平面,所以平面平面.18、(1);(2)存在;.【解析】(1)根据给定条件求出a,c,b即可作答.(2)联立直线l与椭圆C的方程,利用斜率坐标公式并结合韦达定理计算即可推理作答.【小问1详解】依题意,,,,由椭圆定义知:椭圆长轴长,即,而半焦距,即有短半轴长,所以椭圆C的标准方程为:【小问2详解】依题意,设直线l方程为,由消去x并整理得,设,,则,,假定存在点,直线TM与TN的斜率分别为,,,要使为定值,必有,即,当时,,,当时,,,所以存在点,使得直线TM与TN的斜率之积为定值【点睛】方法点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值19、(1);(2).【解析】(1)首先求、的交点坐标,根据的斜率,应用点斜式写出过P且与平行的直线方程;(2)根据弦心距、弦长、半径的关系求圆的半径,结合P的坐标写出圆的方程.【小问1详解】联立、得:,可得,故,又的斜率为,则过P且与平行的直线方程,∴所求直线方程为.【小问2详解】由(1),P到的距离,∴以P为圆心,截所得弦长为8的圆的半径,∴所求圆的方程为.20、(1)证明见解析;(2)证明见解析.【解析】(1)取中点,结合三角形中位线性质可证得四边形为平行四边形,由此得到,由线面平行判定定理可证得结论;(2)利用菱形特点和线面垂直的性质可证得,,由线面垂直的判定定理可证得结论.【详解】(1)取中点,连接,分别为中点,,四边形为菱形,为中点,,,四边形为平行四边形,,又平面,平面,平面.(2)连接,四边形为菱形,,为等边三角形,又为中点,,平面,平面,,又平面,,平面.21、(1);(2)347.【解析】(1)设等差数列的公差为,解方程组即得解;(2)先求出,再分组求和得解.【详解】解:(1)设等差数列的公差为,则解得所以(2)由题意,,所以所以的前8项和为22、(1)答案见

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论