版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南通市田家炳中学2023年高二数学第一学期期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设正实数,满足(其中为正常数),若的最大值为3,则()A.3 B.C. D.2.函数f(x)=xex的单调增区间为()A.(-∞,-1) B.(-∞,e)C.(e,+∞) D.(-1,+∞)3.如图,是函数的部分图象,且关于直线对称,则()A. B.C. D.4.已知等差数列的前n项和为,且,则()A.2 B.4C.6 D.85.函数在上的最小值为()A. B.C.-1 D.6.在数列中,已知,则“”是“是单调递增数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.已知数列满足,(且),若恒成立,则M的最小值是()A.2 B.C. D.38.若构成空间向量的一组基底,则下列向量不共面的是()A.,, B.,,C.,, D.,,9.函数的单调增区间为()A. B.C. D.10.已知等比数列的公比q为整数,且,,则()A.2 B.3C.-2 D.-311.已知等比数列的首项为1,公比为2,则=()A. B.C. D.12.如图所示几何体的正视图和侧视图都正确的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.直线与曲线有且仅有一个公共点.则b的取值范围是__________14.已知直线与曲线,在曲线上随机取一点,则点到直线的距离不大于的概率为__________.15.已知抛物线的焦点为,过焦点的直线交抛物线与两点,且,则拋物线的准线方程为________.16.已知球面上的三点A,B,C满足,,,球心到平面ABC的距离为,则球的表面积为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是等差数列,,.(1)求的通项公式;(2)若数列是公比为的等比数列,,求数列的前项和.18.(12分)已知椭圆(a>b>0)的右焦点为F2(3,0),离心率为e.(1)若e=,求椭圆的方程;(2)设直线y=kx与椭圆相交于A,B两点,M,N分别为线段AF2,BF2的中点,若坐标原点O在以MN为直径的圆上,且<e≤,求k的取值范围.19.(12分)已知圆的圆心在直线上,且圆经过点与点.(1)求圆的方程;(2)过点作圆的切线,求切线所在的直线的方程.20.(12分)某市对新形势下的中考改革工作进行了全面的部署安排.中考录取科目设置分为固定赋分科目和非固定赋分科目,固定赋分科目(语文、数学、英语、物理、体育与健康)按卷面分计算;非固定赋分科目(化学、生物、道德与法治、历史、地理)按学生在该学科中的排名进行等级赋分,即根据改革方案,将每门等级考试科目中考生的原始成绩从高到低分为A,,,,,,,共个等级.参照正态分布原则,确定各等级人数所占比例分别为,,,,,,,.等级考试科目成绩计入考生总成绩时,将A至等级内的考生原始成绩,依照等比例转换法则,分别转换到,,,,,,,八个分数区间,得到考生的等级成绩.该市学生的中考化学原始成绩制成频率分布直方图如图所示:(1)求图中的值;(2)估计该市学生中考化学原始成绩不少于多少分才能达到等级及以上(含等级)?(3)由于中考改革后学生各科原始成绩不再返回学校,只告知各校参考学生的各科平均成绩及方差.已知某校初三共有名学生参加中考,为了估计该校学生的化学原始成绩达到等级及以上(含等级)的人数,将该校学生的化学原始成绩看作服从正态分布,并用这名学生的化学平均成绩作为的估计值,用这名学生化学成绩的方差作为的估计值,计算人数(结果保留整数)附:,,.21.(12分)在中,a,b,c分别是内角A,B,C的对边,满足.(1)求A;(2)若,求面积的最大值.22.(10分)在中,是的中点,,现将该平行四边形沿对角线折成直二面角,如图:(1)求证:;(2)求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由于,,为正数,且,所以利用基本不等式可求出结果【详解】解:因为正实数,满足(其中为正常数),所以,则,所以,所以故选:D.2、D【解析】求出,令可得答案.【详解】由已知得,令,得,故函数f(x)=xex的单调增区间为(-1,+∞).故选:D.3、C【解析】先根据条件确定为函数的极大值点,得到的值,再根据图像的单调性和导数几何意义得到和的正负即可判断.【详解】根据题意得,为函数部分函数的极大值点,所以,又因为函数在单调递增,由图像可知处切线斜率为锐角,根据导数的几何意义,所以,又因为函数在单调递增,由图像可知处切线斜率为钝角,根据导数的几何意义所以.即.故选:C.4、B【解析】根据等差数列前n项和公式,结合等差数列下标的性质、等差数列通项公式进行求解即可.【详解】设等差数列的公差为,,,故选:B5、D【解析】求出函数的导函数,根据导数的符号求出函数的单调区间,再根据函数的单调性即可得出答案.【详解】解:因为,所以,当时,,单调递减;当时,,单调递增,故.故选:D.6、C【解析】分别求出当、“是单调递增数列”时实数的取值范围,利用集合的包含关系判断可得出结论.【详解】已知,若,即,解得.若数列是单调递增数列,对任意的,,即,所以,对任意的恒成立,故,因此,“”是“是单调递增数列”充要条件.故选:C.7、C【解析】根据,(且),利用累加法求得,再根据恒成立求解.【详解】因为数列满足,,(且)所以,,,,因为恒成立,所以,则M的最小值是,故选:C8、C【解析】根据空间向量共面的条件即可解答.【详解】对于A,由,所以,,共面;对于B,由,所以,,共面;对于D,,所以,,共面,故选:C.9、D【解析】先求定义域,再求导数,令解不等式,即可.【详解】函数的定义域为令,解得故选:D【点睛】本题考查利用导数研究函数的单调性,属于中档题.10、A【解析】由等比数列的性质有,结合已知求出基本量,再由即可得答案.【详解】因为,,且q为整数,所以,,即q=2.所以.故选:A11、D【解析】数列是首项为1,公比为4的等比数列,然后可算出答案.【详解】因为等比数列的首项为1,公比为2,所以数列是首项为1,公比为4的等比数列所以故选:D12、B【解析】根据侧视图,没有实对角线,正视图实对角线的方向,排除错误选项,得到答案.【详解】侧视时,看到一个矩形且不能有实对角线,故A,D排除而正视时,有半个平面是没有的,所以应该有一条实对角线,且其对角线位置应从左上角画到右下角,故C排除.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、或.【解析】根据曲线方程得曲线的轨迹是个半圆,数形结合分析得两种情况:(1)直线与半圆相切有一个交点;(2)直线与半圆相交于一个点,综合两种情况可得答案.【详解】由曲线,可得,表示以原点为圆心,半径为的右半圆,是倾斜角为的直线与曲线有且只有一个公共点有两种情况:(1)直线与半圆相切,根据,所以,结合图像可得;(2)直线与半圆的上半部分相交于一个交点,由图可知.故答案为:或.【点睛】方法点睛:处理直线与圆位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法;如果或有限制,需要数形结合进行分析.14、【解析】画出示意图,根据图形分析可知点在阴影部分所对的劣弧上,由几何概型可求出.【详解】作出示意图曲线是圆心为原点,半径为2的一个半圆.圆心到直线距离,而点到直线的距离为,故若点到直线的距离不大于,则点在阴影部分所对的劣弧上,由几何概型的概率计算公式知,所求概率为.故答案为:.【点睛】本题考查几何概型的概率计算,属于中档题.15、【解析】根据题意作出图形,设直线与轴的夹角为,不妨设,设抛物线的准线与轴的交点为,过点作准线与轴的垂线,垂足分别为,过点分别作准线和轴的垂线,垂足分别为,进一步可以得到,进而求出,同理求出,最后解得答案.【详解】设直线与轴的夹角为,根据抛物线的对称性,不妨设,如图所示.设抛物线的准线与轴的交点为,过点作准线与轴的垂线,垂足分别为,过点分别作准线和轴的垂线,垂足分别为.由抛物线的定义可知,,同理:,于是,,则抛物线的准线方程为:.故答案为:.16、【解析】由题意可知为直角三角形,求出外接圆的半径,可求出球的半径,然后求球的表面积.【详解】由题意,,,,则,可知,所以外接圆的半径为,因为球心到平面的距离为,所以球的半径为:,所以球的表面积为:.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由题意得解方程组求出,从而可求出数列的通项公式,(2)因为是公比为的等比数列,又,,所以,从而可得,然后利用分组求和法求解即可【小问1详解】设等差数列的公差为.由题意得解得,.所以.【小问2详解】因为是公比为的等比数列,又,,所以,所以.所以.18、(1);(2)【解析】(1)根据右焦点为F2(3,0),以及,求得a,b,c即可.(2)联立,根据M,N分别为线段AF2,BF2中点,且坐标原点O在以MN为直径的圆上,易得OM⊥ON,则四边形OMF2N为矩形,从而AF2⊥BF2,然后由0,结合韦达定理求解.【详解】(1)由题意得c=3,,所以.又因为a2=b2+c2,所以b2=3.所以椭圆的方程为.(2)由,得(b2+a2k2)x2-a2b2=0.设A(x1,y1),B(x2,y2),所以x1+x2=0,x1x2=,依题意易知,OM⊥ON,四边形OMF2N为矩形,所以AF2⊥BF2.因为(x1-3,y1),(x2-3,y2),所以(x1-3)(x2-3)+y1y2=(1+k2)x1x2+9=0.即,将其整理为k2==-1-.因为<e≤,所以2≤a<3,12≤a2<18.所以k2≥,即k∈【点睛】关键点点睛:本题第二问的关键是由O在以MN为直径的圆上,即OM⊥ON,得到四边形OMF2N为矩形,推出AF2⊥BF2,结合韦达定理得出斜率k与离心率e的关系.19、(1);(2)或.【解析】(1)求出线段中点,进而得到线段的垂直平分线为,与联立得交点,∴.则圆的方程可求(2)当切线斜率不存在时,可知切线方程为.当切线斜率存在时,设切线方程为,由到此直线的距离为,解得,即可到切线所在直线的方程.试题解析:(1)线段的中点为,∵,∴线段的垂直平分线为,与联立得交点,∴.∴圆的方程为.(2)当切线斜率不存在时,切线方程为.当切线斜率存在时,设切线方程为,即,则到此直线的距离为,解得,∴切线方程为.故满足条件的切线方程为或.【点睛】本题考查圆的方程的求法,圆的切线,中点弦等问题,解题的关键是利用圆的特性,利用点到直线的距离公式求解20、(1)(2)85(3)23【解析】(1)根据所有矩形面积之和等于1可得;(2)先根据矩形面积之和判断达到等级的最低分数为x所在区间,然后根据矩形面积之和等于0.9可得;(3)由题知,所以由可得.【小问1详解】由得【小问2详解】由题意可知,要使等级达到等级及以上,则成绩需超过的学生.因为,记达到等级的最低分数为x,则,则由,解得所以该市学生中考化学原始成绩不少于85分才能达到等级及以上.【小问3详解】由题知,因为所以故该校学生的化学原始成绩达到等级及以上的人数大约为人.21、(1)(2)【解析】(1)由正弦定理得,再由范围可得答案;(2)由余弦定理和基本不等式可得,再由面积公式可得答案.【小问1详解】∵,由正弦定理得,又,所以,又,则;【小问2详解】由余弦定理得,即,所以,当且仅当,取“=”,所以面积的最大值为22、(1)证明见解析(2)【解析】(1)先求出BD,通
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生态园区餐厅招投标方案
- 文化石匠施工合同
- 城市绿化聘用合同证明
- 城市绿化设施消火栓施工合同
- 通辽市物业紧急疏散演练方案
- 如何做好离职面谈计划
- 城市商业广场建设合同三篇
- 急诊药物过敏反应的管理计划
- 中药专业论证报告
- 高中生青春国旗下演讲稿【七篇】
- 安徽省合肥市包河区2023-2024学年三年级上学期语文期末试卷
- 【MOOC】新媒体文化十二讲-暨南大学 中国大学慕课MOOC答案
- 2024-2025学年二年级数学上册期末乐考非纸笔测试题(二 )(苏教版)
- 2024年度智能制造生产线改造项目合同
- 北京市西城区2023-2024学年六年级上学期语文期末试卷
- 2025年蛇年年会汇报年终总结大会模板
- 九年级学业水平-信息技术考试试题题库及答案
- GA 1804-2022危险化学品生产企业反恐怖防范要求
- 华为性格测试攻略
- 河南省建筑业诚信劳务企业评价办法(试行)
- 压力管道安装机械设备操作规程讲解
评论
0/150
提交评论