




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省揭阳市揭西河婆中学2024届高二数学第一学期期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等差数列的前n项和为Sn,首项a1=1,若,则公差d的取值范围为()A. B.C. D.2.如图甲是第七届国际数学家大会(简称ICME—7)的会徽图案,其主体图案是由图乙的一连串直角三角形演化而成的.已知,,,,为直角顶点,设这些直角三角形的周长从小到大组成的数列为,令,为数列的前项和,则()A.8 B.9C.10 D.113.如果双曲线的一条渐近线方程为,且经过点,则双曲线的标准方程是()A. B.C. D.4.与的等差中项是()A. B.C. D.5.已知等比数列的首项为1,公比为2,则=()A. B.C. D.6.若,满足约束条件则的最大值是A.-8 B.-3C.0 D.17.公元前6世纪,古希腊的毕达哥拉斯学派研究发现了黄金分割,简称黄金数.离心率等于黄金数的倒数的双曲线称为黄金双曲线.若双曲线是黄金双曲线,则()A. B.C. D.8.命题“存在,使得”为真命题的一个充分不必要条件是()A. B.C. D.9.空间直角坐标系中,已知则点关于平面的对称点的坐标为()A. B.C. D.10.函数的图象大致为()A. B.C. D.11.已知,则()A. B.1C. D.12.已知、,直线,,且,则的最小值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数的图象与x轴相交于A,B两点,与y轴相交于点C,则的外接圆E的方程是________14.已知抛物线的顶点为坐标原点,焦点坐标是,则该抛物线的标准方程为___________15.已知从某班学生中任选两人参加农场劳动,选中两人都是男生的概率是,选中两人都是女生的概率是,则选中两人中恰有一人是女生的概率为______16.数列满足前项和,则数列的通项公式为_____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面ABCD为矩形,侧面PAD是正三角形,平面平面ABCD,M是PD的中点(1)证明:平面PCD;(2)若PB与底面ABCD所成角的正切值为,求二面角的正弦值18.(12分)已知函数的图象在处的切线方程为.(1)求的解析式;(2)若关于的方程在上有解,求的取值范围.19.(12分)如图,正三棱柱的侧棱长为,底面边长为,点为的中点,点在直线上,且(1)证明:面;(2)求平面和平面夹角的余弦值20.(12分)已知椭圆.离心率为,点与椭圆的左、右顶点可以构成等腰直角三角形(1)求椭圆的方程;(2)若直线与椭圆交于两点,为坐标原点直线的斜率之积等于,试探求的面积是否为定值,并说明理由21.(12分)新冠肺炎疫情发生以来,我国某科研机构开展应急科研攻关,研制了一种新型冠状病毒疫苗,并已进入二期临床试验.根据普遍规律,志愿者接种疫苗后体内会产生抗体,人体中检测到抗体,说明有抵御病毒的能力.通过检测,用表示注射疫苗后的天数,表示人体中抗体含量水平(单位:,即:百万国际单位/毫升),现测得某志愿者的相关数据如下表所示:天数123456抗体含量水平510265096195根据以上数据,绘制了散点图.(1)根据散点图判断,与(a,b,c,d均为大于0的实数)哪一个更适宜作为描述y与x关系的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果求出y关于x的回归方程,并预测该志愿者在注射疫苗后的第10天的抗体含量水平值;(3)从这位志愿者前6天的检测数据中随机抽取4天的数据作进一步的分析,记其中的y值大于50的天数为X,求X的分布列与数学期望.参考数据:3.5063.673.4917.509.4912.95519.014023.87其中.参考公式:用最小二乘法求经过点,,,,的线性回归方程的系数公式,;.22.(10分)记是等差数列的前项和,若.(1)求数列的通项公式;(2)求使成立的的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】该等差数列有最大值,可分析得,据此可求解.【详解】,故,故有故d取值范围为.故选:A2、B【解析】由题意可得的边长,进而可得周长及,进而可得,可得解.【详解】由,可得,,,,所以,,所以前项和,所以,故选:B.3、D【解析】根据渐近线方程设出双曲线方程,然后将点代入,进而求得答案.【详解】因为双曲线的一条渐近线方程为,所以设双曲线方程为,将代入得:,即双曲线方程为.故选:D.4、A【解析】代入等差中项公式即可解决.【详解】与的等差中项是故选:A5、D【解析】数列是首项为1,公比为4的等比数列,然后可算出答案.【详解】因为等比数列的首项为1,公比为2,所以数列是首项为1,公比为4的等比数列所以故选:D6、C【解析】作出可行域,把变形为,平移直线过点时,最大.【详解】作出可行域如图:由得:,作出直线,平移直线过点时,.故选C.【点睛】本题主要考查了简单线性规划问题,属于中档题.7、A【解析】根据黄金双曲线的定义直接列方程求解【详解】双曲线中的,所以离心率,因为双曲线是黄金双曲线,所以,两边平方得,解得或(舍去),故选:A8、B【解析】“存在,使得”为真命题,可得,利用二次函数的单调性即可得出.再利用充要条件的判定方法即可得出.【详解】解:因为“存在,使得”为真命题,所以,因此上述命题得个充分不必要条件是.故选:B.【点睛】本题考查了二次函数的单调性、充要条件的判定方法,考查了推理能力与计算能力,属于中档题.9、D【解析】根据空间直角坐标系的对称性可得答案.【详解】根据空间直角坐标系的对称性可得关于平面的对称点的坐标为,故选:D.10、A【解析】由题意首先确定函数的奇偶性,然后考查函数在特殊点的函数值排除错误选项即可确定函数的图象.【详解】由函数的解析式可得:,则函数为奇函数,其图象关于坐标原点对称,选项CD错误;当时,,选项B错误.故选:A.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项11、B【解析】先根据共轭复数的定义可得,再根据复数的运算法则即可求出【详解】因为,所以故选:B12、D【解析】先由,可得,变形得,所以,化简后利用基本不等式求解即可【详解】因为、,直线,,且,所以,即,所以,所以,所以,当且仅当,即时,取等号,所以的最小值为,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题可求三角形三顶点的坐标,三角形的外接圆的方程即求.【详解】令,得或,则,∴外接圆的圆心的横坐标为2,设,半径为r,由,得,则,即,得,.∴的外接圆的方程为.故答案为:.14、【解析】根据焦点坐标即可得到抛物线的标准方程【详解】因为抛物线的顶点为坐标原点,焦点坐标是,所以,解得,抛物线的标准方程为故答案为:15、【解析】记“选中两人都是男生”为事件,“选中两人都是女生”为事件,“选中两人中恰有一人是女生”为事件,根据为互斥事件,与为对立事件,从而可求出答案.【详解】记“选中两人都是男生”为事件,“选中两人都是女生”为事件,“选中两人中恰有一人是女生”为事件,易知为互斥事件,与为对立事件,又,所以.故答案为:.16、【解析】由已知中前项和,结合,分别讨论时与时的通项公式,并由时,的值不满足时的通项公式,故要将数列的通项公式写成分段函数的形式【详解】∵数列前项和,∴当时,,又∵当时,,故,故答案为.【点睛】本题考查的知识点是等差数列的通项公式,其中正确理解由数列的前n项和Sn,求通项公式的方法和步骤是解答本题的关键三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)依题意可得,再根据面面垂直的性质得到平面,即可得到,即可得证;(2)取的中点为,连接,根据面面垂直的性质得到平面,连接,即可得到为与底面所成角,令,,利用锐角三角函数的定义求出,建立如图所示空间直角坐标系,利用空间向量法求出二面角的余弦值,即可得解;【小问1详解】解:证明:在正中,为的中点,∴∵平面平面,平面平面,且.∴平面,又∵平面∴.又∵,且,平面.∴平面【小问2详解】解:如图,取的中点为,连接,在正中,,平面平面,平面平面,∴平面,连接,则为与底面所成角,即.不妨取,,,,∴以为原点建立如图所示的空间直角坐标系,则有,,,,,,∴,设面的一个法向量为,则由令,则,又因为面,取作为面的一个法向量,设二面角为,∴,∴,因此二面角的正弦值为18、(1)(2)【解析】(1)求,由条件可得,得出关于的方程组,求解可得;(2)令,注意,所以在具有单调性时,则方程无解,求,对分类讨论,求出单调区间,结合函数值的变化趋势,即可求得结论.【详解】解:(1),因为,所以,解得,,所以.(2)令,则.令,则在上单调递增.当,即时,,所以单调递增,又,所以;当,即时,则存在,使得,所以函数在上单调递减,在上单调递增,又,则.当时,,所以在上有解.综上,的取值范围为.【点睛】本题考查导数的几何意义求参数,考查导数的综合应用,涉及到单调区间、函数零点的问题,考查分类讨论思想,属于较难题.19、(1)证明见解析(2)【解析】(1)证明平面,可得出,再由结合线面垂直的判定定理可证得结论成立;(2)以点为坐标原点,、、的方向分别为、、轴的正方向建立空间直角坐标系,利用空间向量法可求得结果.【小问1详解】证明:正中,点为的中点,,因为平面,平面,则,,则平面,平面,则,又,且,平面.【小问2详解】解:因为,以点为坐标原点,、、的方向分别为、、轴的正方向建立如下图所示的空间直角坐标系,则、、、,设平面的法向量为,,,则,取,可得,平面,平面,则,又因为,,故平面,所以,平面的一个法向量为,则.因此,平面和平面夹角的余弦值为.20、(1);(2)是定值,理由见解析.【解析】(1)由题意有,点与椭圆的左、右顶点可以构成等腰直角三角形有,即可写出椭圆方程;(2)直线与椭圆交于两点,联立方程结合韦达定理即有,已知应用点线距离公式、三角形面积公式即可说明的面积是否为定值;【详解】(1)椭圆离心率为,即,∵点与椭圆的左、右顶点可以构成等腰直角三角形,∴,综上有:,,故椭圆方程为,(2)由直线与椭圆交于两点,联立方程:,整理得,设,则,,,,原点到的距离,为定值;【点睛】本题考查了由离心率求椭圆方程,根据直线与椭圆的相交关系证明交点与原点构成的三角形面积是否为定值的问题.21、(1)(2),4023.87(3)分布列答案见解析,数学期望:【解析】(1)由于这些点分布在一条曲线的附近,从而可选出回归方程,(2)设,,则建立w关于x的回归方程,然后根据公式和表中的数据求解回归方程即可,再将代入回归方程可求得在注射疫苗后的第10天的抗体含量水平值,(3)由题意可知x的可能取值为0,1,2,然后求对应的概率,从而可求出分布列和期望【小问1详解】根据散点图可知这些点分布在一条曲线的附近,所以更适合作为描述y与x关系的回归方程类型.【小问2详解】设,变换后可得,设,建立w关于x的回归方程,,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023-2024学年辽宁大石桥八年级上期末模拟物理卷【含答案】
- 房屋合同纠纷预防与解决四
- 劳动合同男方提出终止合约
- 设备租赁预付款合同
- 货车租赁公司合同范本
- 装修材料采购合同模板
- 2《以礼待人》公开课一等奖创新教学设计
- 中国古典舞的审美特征
- 医院总值班管理控制
- 八年级生物上册 15.2《动物运动的形成》教学设计 (新版)北师大版
- 老年患者髋部骨折围手术期麻醉管理
- 高处坠落事故案例及事故预防安全培训
- 2023输煤专业考试题库全考点(含答案)
- 《最后一片叶子》课件 2024年高教版(2023)中职语文基础模块上册
- 23秋国家开放大学《视觉设计基础》形考任务1-5参考答案
- 河南观光小火车策划方案
- GMP-净化空调系统管理制度
- 《隧洞回填灌浆》课件
- 员工考核PK协议书
- 居住权协议书
- 我是少年阿凡提课件
评论
0/150
提交评论