河南省九师联盟2024届高二上数学期末复习检测模拟试题含解析_第1页
河南省九师联盟2024届高二上数学期末复习检测模拟试题含解析_第2页
河南省九师联盟2024届高二上数学期末复习检测模拟试题含解析_第3页
河南省九师联盟2024届高二上数学期末复习检测模拟试题含解析_第4页
河南省九师联盟2024届高二上数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省九师联盟2024届高二上数学期末复习检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若椭圆对称轴是坐标轴,长轴长为,焦距为,则椭圆的方程()A. B.C.或 D.以上都不对2.“”是“直线和直线垂直”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.在直角坐标系中,直线的倾斜角是A.30° B.60°C.120° D.150°4.是直线与直线互相平行的()条件A.必要而不充分 B.充分而不必要C.充要 D.既不充分也不必要5.在正三棱锥S−ABC中,M、N分别是棱SC、BC的中点,且,若侧棱,则正三棱锥S−ABC外接球的表面积是()A. B.C. D.6.在下列函数中,求导错误的是()A., B.,C., D.,7.已知向量,则下列结论正确的是()A.B.C.D.8.数学中的数形结合也可以组成世间万物的绚丽画面,-些优美的曲线是数学形象美、对称美、和谐美的产物.曲线C:为四叶玫瑰线.①方程(xy<0)表示的曲线在第二和第四象限;②曲线C上任一点到坐标原点0的距离都不超过2;③曲线C构成的四叶玫瑰线面积大于4π;④曲线C上有5个整点(横、纵坐标均为整数的点).则上述结论中正确的个数是()A.1 B.2C.3 D.49.已知五个数据3,4,x,6,7的平均数是x,则该样本标准差为()A.1 B.C. D.210.以椭圆+=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是()A. B.C. D.11.甲、乙两名同学同时从教室出发去体育馆打球(路程相等),甲一半时间步行,一半时间跑步;乙一半路程步行,一半路程跑步.如果两人步行速度、跑步速度均相等,则()A.甲先到体育馆 B.乙先到体育馆C.两人同时到体育馆 D.不确定谁先到体育馆12.执行如图所示的程序框图,若输出的,则输入的可能为()A.9 B.5C.4 D.3二、填空题:本题共4小题,每小题5分,共20分。13.双曲线的渐近线方程为______14.已知球的半径为4,圆与圆为该球的两个小圆,为圆与圆的公共弦,,若,则两圆圆心的距离___________15.已知双曲线:,斜率为的直线与E的左右两支分别交于A,B两点,点P的坐标为,直线AP交E于另一点C,直线BP交E于另一点D.若直线CD的斜率为,则E的离心率为___________16.若点O和点F分别为椭圆+=1的中心和左焦点,点P为椭圆上的任意一点,则·的最大值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列为等差数列,满足,.(1)求数列的通项公式;(2)求数列的前n项和,并求的最大值.18.(12分)已知函数.(1)当时,求函数的极大值与极小值;(2)若函数在上的最大值是最小值的3倍,求a的值.19.(12分)要设计一种圆柱形、容积为500mL的一体化易拉罐金属包装,如何设计才能使得总成本最低?20.(12分)如图,在四棱锥中,为平行四边形,,平面,且,点是的中点.(1)求证:平面;(2)在线段上(不含端点)是否存在一点,使得二面角的余弦值为?若存在,确定的位置;若不存在,请说明理由.21.(12分)如图,在四棱锥中,平面,底面是直角梯形,,,,,为侧棱包含端点上的动点.(1)当时,求证平面;(2)当直线与平面所成角的正弦值为时,求二面角的余弦值.22.(10分)在等差数列中,(1)求数列的通项公式;(2)设数列是首项为1,公比为2的等比数列,求数列的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】求得、、的值,由此可得出所求椭圆的方程.【详解】由题意可得,解得,,由于椭圆的对称轴是坐标轴,则该椭圆的方程为或.故选:C.2、A【解析】因为直线和直线垂直,所以或,再根据充分必要条件的定义判断得解.【详解】因为“直线和直线垂直,所以或.当时,直线和直线垂直;当直线和直线垂直时,不一定成立.所以是直线和直线垂直的充分不必要条件,故选:A3、D【解析】根据直线方程得到直线的斜率后可得直线的倾斜角.【详解】设直线的倾斜角为,则,因,故,故选D.【点睛】直线的斜率与倾斜角的关系是:,当时,直线的斜率不存在,注意倾斜角的范围.4、B【解析】求出直线与平行的等价条件,再利用充分条件、必要条件的定义判断作答.【详解】由解得或,当时,与平行,当时,与平行,则直线与直线平行等价于或,所以是直线与直线互相平行的充分而不必要条件.故选:B5、A【解析】由题意推出平面,即平面,,将此三棱锥补成正方体,则它们有相同的外接球,正方体的对角线就是球的直径,求出直径即可求出球的体积【详解】∵,分别为棱,的中点,∴,∵三棱锥为正棱锥,作平面,所以是底面正三角的中心,连接并延长交与点,∵底面是正三角形,,平面∴,,∵,平面,平面,∴平面,∵平面,∴,∴,又∵,而,且,平面,∴平面,∴平面,∴,因为S−ABC是正三棱锥。所以,以,,为从同一定点出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的体对角线就是球的直径,,所以.故选:A.6、B【解析】分别求得每个函数的导数即可判断.详解】;;;.故求导错误的是B.故选:B.7、D【解析】由题可知:,,,故选;D8、B【解析】对于①,由判断,对于②,利用基本不等式可判断,对于③,以为圆心,2为半径的圆的面积与曲线围成的面积进行比较即可,对于④,将和联立,求解出两曲线的切点,从而可判断【详解】对于①,由,得异号,方程(xy<0)关于原点及y=x对称,所以方程(xy<0)表示的曲线在第二和第四象限,所以①正确,对于②,因为,所以,所以,所以,所以由曲线的对称性可知曲线C上任一点到坐标原点0的距离都不超过2,所以②正确,对于③,由②可知曲线C上到原点的距离不超过2,而以为圆心,2为半径的圆的面积为,所以曲线C构成的四叶玫瑰线面积小于4π,所以③错误,对于④,将和联立,解得,所以可得圆与曲线C相切于点,,,,而点(1,1)不满足曲线方程,所以曲线在第一象限不经过任何整数点,由曲线的对称性可知曲线在其它象限也不经过任何整数点,所以曲线C上只有1个整点(0,0),所以④错误,故选:B9、B【解析】先求出的值,然后利用标准差公式求解即可【详解】解:因为五个数据3,4,x,6,7的平均数是x,所以,解得,所以标准差,故选:B10、B【解析】根据椭圆的几何性质求椭圆的焦点坐标和长轴端点坐标,由此可得双曲线的a,b,c,再求双曲线的标准方程.【详解】∵椭圆的方程为+=1,∴椭圆的长轴端点坐标为,,焦点坐标为,,∴双曲线的焦点在y轴上,且a=1,c=2,∴b2=3,∴双曲线方程为,故选:B.11、A【解析】设出总路程与步行速度、跑步速度,表示出两人所花时间后比较不等式大小【详解】设总路程为,步行速度,跑步速度对于甲:,得对于乙:,当且仅当时等号成立,而,故,乙花时间多,甲先到体育馆故选:A12、D【解析】根据输出结果可得输出时,结合执行逻辑确定输入k的可能值,即可知答案.【详解】由,得,则输人的可能为.∴结合选项知:D符合要求.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】将双曲线方程化成标准方程,得到且,利用双曲线渐近线方程,可得结果【详解】把双曲线化成标准方程为,且,双曲线的渐近线方程为,即故答案为【点睛】本题主要考查利用双曲线的方程求渐近线方程,意在考查对基础知识的掌握情况,属于基础题.若双曲线方程为,则渐近线方程为;若双曲线方程为,则渐近线方程为.14、【解析】欲求两圆圆心的距离,将它放在与球心组成的三角形中,只要求出球心角即可,通过球的性质构成的直角三角形即可解得【详解】∵,球半径为4,∴小圆的半径为,∵小圆中弦长,作垂直于,∴,同理可得,在直角三角形中,∵,,∴,∴,∴故答案为:.15、【解析】分别设线段的中点,线段的中点,再利用点差法可表示出,由平行关系易知三点共线,从而利用斜率相等的关系构造方程,代入整理可得到关系,利用双曲线得到关于的齐次方程,进而求得离心率.【详解】设,,线段的中点,两式相减得:…①设,,线段的中点同理可得:…②,易知三点共线,将①②代入得:,所以,即,由题意可得,故.∴,即故答案为:16、6【解析】由椭圆方程得到F,O的坐标,设P(x,y)(-2≤x≤2),利用数量积的坐标运算将·转化为二次函数最值求解.【详解】由椭圆+=1,可得F(-1,0),点O(0,0),设P(x,y)(-2≤x≤2),则·=x2+x+y2=x2+x+3=x2+x+3=(x+2)2+2,-2≤x≤2,当x=2时,·取得最大值6.故答案为:6【点睛】本题主要考查平面向量的数量积及应用以及椭圆的几何性质和二次函数求最值,还考查了运算求解的能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2),45【解析】(1)由等差数列的通项列出方程组,得出通项公式;(2)先得出,再由二次函数的性质得出最大值.【小问1详解】由,解得,即【小问2详解】,二次型函数开口向下,对称轴为,则当或时,有最大值45.18、(1)的极大值为0,的极小值为(2)2【解析】(1)先求导可得,再利用导函数判断的单调性,进而求解;(2)由(1)可得在上的最小值为,由,,可得的最大值为,进而根据求解即可.【详解】解:(1)当时,,所以,令,则或,则当和时,;当时,,则在和上单调递增,在上单调递减,所以极大值为;的极小值为.(2)由题,,由(1)可得在上单调递减,在上单调递增,所以的最小值即为的极小值;因为,,所以,因为,则,所以.【点睛】本题考查利用导函数求函数的极值,考查利用导函数求函数的最值,考查运算能力.19、当圆柱底面半径为,高为时,总成本最底.【解析】设圆柱底面半径为cm,高为cm,圆柱表面积为Scm2,进而根据体积得到,然后求出表面积,进而运用导数的方法求得表面积的最小值,此时成本最小.【详解】设圆柱底面半径为cm,高为cm,圆柱表面积为Scm2,每平方厘米金属包装造价为元,由题意得:,则,表面积造价,,令,得,令,得,的单调递减区间为,递增区间为,当圆柱底面半径为,高为时,总成本最底.20、(1)见解析(2)存在,【解析】(1)连接交于点,由三角形中位线性质知,由线面平行判定定理证得结论;(2)以为原点建立空间直角坐标系,假设,可用表示出点坐标;根据二面角的向量求法可根据二面角的余弦值构造出关于的方程,从而解得结果.【详解】(1)连接交于点,连接,四边形为平行四边形,为中点,又为中点,,平面,平面,平面;(2)平面,,两两互相垂直,则以为坐标原点,可建立如下图所示的空间直角坐标系:则,,,,,,设,且,则,,即,设平面的法向量,又,,则,令,则,,;设平面的一个法向量,又,,则,令,则,,;,解得:或,二面角的余弦值为,二面角为锐二面角,不满足题意,舍去,即.在线段上存在点,时,二面角的余弦值为.【点睛】本题考查立体几何中的线面平行关系的证明、存在性问题的求解;求解存在性问题的关键是能够利用共线向量的方式将所求点坐标表示出来,进而利用二面角的向量求法构造方程;易错点是忽略二面角的范围,造成参数值求解错误.21、(1)证明见解析;(2).【解析】(1)连接交于,连接,证得,从而证得平面;(2)过作于,以为原点,建立空间直角坐标系,设,求面的法向量,由直线与平面所成角的正弦值为,求得的值,再用向量法求出二面角的余弦值.【详解】解:(1)连接交于,连接,由题意,∵,∴,∴,又面,面,∴面.(2)过作于,则在中,,,,以为原点,建立如图所示的空间直角坐标系.设,则,,,,,,,,设向量

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论