版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省周口市重点高中2023年数学高二上期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某双曲线的一条渐近方程为,且焦点为,则该双曲线的方程是()A. B.C. D.2.等差数列的首项为正数,其前n项和为.现有下列命题,其中是假命题的有()A.若有最大值,则数列的公差小于0B.若,则使的最大的n为18C.若,,则中最大D.若,,则数列中的最小项是第9项3.已知直线l:的倾斜角为,则()A. B.1C. D.-14.已知直线l经过,两点,则直线l的倾斜角是()A.30° B.60°C.120° D.150°5.新冠肺炎疫情的发生,我国的三大产业均受到不同程度的影响,其中第三产业中的各个行业都面临着很大的营收压力.2020年7月国家统计局发布了我国上半年国内经济数据,如图所示,图1为国内三大产业比重,图2为第三产业中各行业比重下列关于我国上半年经济数据的说法正确的是()A.第一产业的生产总值与第三产业中“其他服务业”的生产总值基本持平B.第一产业的生产总值超过第三产业中“金融业”的生产总值C.若“住宿和餐饮业”生产总值为7500亿元,则“房地产”生产总值为22500亿元D.若“金融业”生产总值为41040亿元,则第二产业生产总值为166500亿元6.我国古代数学名著《算法统宗》记有行程减等问题:三百七十八里关,初行健步不为难次日脚痛减一半,六朝才得到其关.要见每朝行里数,请公仔细算相还.意为:某人步行到378里的要塞去,第一天走路强壮有力,但把脚走痛了,次日因脚痛减少了一半,他所走的路程比第一天减少了一半,以后几天走的路程都比前一天减少一半,走了六天才到达目的地.请仔细计算他每天各走多少路程?在这个问题中,第四天所走的路程为()A.96 B.48C.24 D.127.已知数列是等比数列,,是函数的两个不同零点,则()A.16 B.C.14 D.8.在等差数列{}中,,,则的值为()A.18 B.20C.22 D.249.已知数列的通项公式为,是数列的最小项,则实数的取值范围是()A. B.C. D.10.东汉末年的数学家赵爽在《周髀算经》中利用一副“弦图”,根据面积关系给出了勾股定理的证明,后人称其为“赵爽弦图”.如图1,它由四个全等的直角三角形与一个小正方形拼成的一个大正方形.我们通过类比得到图2,它是由三个全等的钝角三角形与一个小等边三角形拼成的一个大等边三角形.对于图2.下列结论正确的是()①这三个全等的钝角三角形不可能是等腰三角形;②若,,则;③若,则;④若是的中点,则三角形的面积是三角形面积的7倍.A.①②④ B.①②③C.②③④ D.①③④11.如图,已知,分别是椭圆的左、右焦点,现以为圆心作一个圆恰好经过椭圆的中心并且交椭圆于点,.若过点的直线是圆的切线,则椭圆的离心率为()A. B.C. D.12.一盒子里有黑色、红色、绿色的球各一个,现从中选出一个球.事件选出的球是红色,事件选出的球是绿色.则事件与事件()A.是互斥事件,不是对立事件 B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件 D.既不是互斥事件也不是对立事件二、填空题:本题共4小题,每小题5分,共20分。13.设集合,把集合中的元素按从小到大依次排列,构成数列,求数列的前项和___14.抛物线的聚焦特点:从抛物线的焦点发出的光经过抛物线反射后,光线都平行于抛物线的对称轴.另一方面,根据光路的可逆性,平行于抛物线对称轴的光线射向抛物线后的反射光线都会汇聚到抛物线的焦点处.已知抛物线,一条平行于抛物线对称轴的光线从点向左发出,先经抛物线反射,再经直线反射后,恰好经过点,则该抛物线的标准方程为___________.15.点为双曲线上一点,为焦点,如果则双曲线的离心率为___________.16.已知为数列{}前n项和,若,且),则=___三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,椭圆的左、右焦点分别为、,左、右顶点分别为、,为椭圆上一点,连接并延长交椭圆于点,已知椭圆的离心率为,△的周长为8(1)求椭圆的方程;(2)设点的坐标为①当,,成等差数列时,求点的坐标;②若直线、分别与直线交于点、,以为直径的圆是否经过某定点?若经过定点,求出定点坐标;若不经过定点,请说明理由18.(12分)已知抛物线C的焦点为,N为抛物线上一点,且(1)求抛物线C的方程;(2)过点F且斜率为k的直线l与C交于A,B两点,,求直线l的方程19.(12分)国家助学贷款由国家指定的商业银行面向在校全日制高等学校经济困难学生发放.用于帮助他们支付在校期间的学习和日常生活费.从年秋季学期起,全日制普通本专科学生每人每年申请贷款额度由不超过元提高至不超过元,助学贷款偿还本金的宽限期从年延长到年.假如学生甲在本科期间共申请到元的助学贷款,并承诺在毕业后年内还清,已知该学生毕业后立即参加工作,第一年的月工资为元,第个月开始,每个月工资比前一个月增加直到元,此后工资不再浮动.(1)学生甲参加工作后第几个月的月工资达到元;(2)如果学生甲从参加工作后的第一个月开始,每个月除了偿还应有的利息外,助学贷款的本金按如下规则偿还:前个月每个月偿还本金元,第个月开始到第个月每个月偿还的本金比前一个月多元,第个月偿还剩余的本金.则他第个月的工资是否足够偿还剩余的本金.(参考数据:;;)20.(12分)已知命题p:实数x满足;命题q:实数x满足.若p是q的必要条件,求实数a的取值范围21.(12分)在平面直角坐标系中,点到两点的距离之和等于4,设点的轨迹为曲线(1)求曲线的方程;(2)设直线与交于两点,为何值时?22.(10分)点与定点的距离和它到直线:的距离的比是常数.(1)求动点的轨迹的方程;(2)点在(1)中轨迹上运动轴,为垂足,点满足,求点轨迹方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设双曲线的方程为,利用焦点为求出的值即可.【详解】因为双曲线的一条渐近方程为,且焦点为,所以可设双曲线的方程为,则,,所以该双曲线方程为.故选:D.2、B【解析】由有最大值可判断A;由,可得,,利用可判断BC;,得,,可判断D.【详解】对于选项A,∵有最大值,∴等差数列一定有负数项,∴等差数列为递减数列,故公差小于0,故选项A正确;对于选项B,∵,且,∴,,∴,,则使的最大的n为17,故选项B错误;对于选项C,∵,,∴,,故中最大,故选项C正确;对于选项D,∵,,∴,,故数列中的最小项是第9项,故选项D正确.故选:B.3、A【解析】由倾斜角求出斜率,列方程即可求出m.【详解】因为直线l的倾斜角为,所以斜率.所以,解得:.故选:A4、C【解析】设直线l的倾斜角为,由题意可得直线l的斜率,即,∵,∴直线l的倾斜角为,故选:.5、D【解析】根据扇形图及柱形图中的各产业与各行业所占比重,得到第三产业中“其他服务业”及“金融业”的生产总值占总生产总值的比重,进而比较出AB选项,利用“住宿和餐饮业”生产总值和“房地产”生产总值的比值,求出“房地产”生产总值,判断出C选项,利用第三产业中“金融业”的生产总值与第二产业的生产总值比值,求出第二产业生产总值,判断D选项.【详解】A选项,第三产业中“其他服务业”的生产总值占总生产总值的,因为,所以第三产业中“其他服务业”的生产总值明显高于第一产业的生产总值,A错误;B选项,第三产业中“金融业”的生产总值占总生产总值的,因为,故第一产业的生产总值少于第三产业中“金融业”的生产总值,B错误;“住宿和餐饮业”生产总值和“房地产”生产总值的比值为,若“住宿和餐饮业”生产总值为7500亿元,则“房地产”生产总值为亿元,故C错误;第三产业中“金融业”的生产总值占总生产总值的,与第二产业的生产总值比值为,若“金融业”生产总值为41040亿元,则第二产业生产总值为166500亿元,D正确.故选:D6、C【解析】每天所走的里程构成公比为的等比数列,设第一天走了里,利用等比数列基本量代换,直接求解.【详解】由题意可知:每天所走的里程构成公比为的等比数列.第一天走了里,第4天走了.故选:C7、B【解析】由题意得到,根据等比数列的性质得到,化简,即可求解.【详解】由,是函数的两个不同零点,可得,根据等比数列的性质,可得则.故选:B.8、B【解析】根据等差数列通项公式相关计算求出公差,进而求出首项.【详解】设公差为,由题意得:,解得:,所以.故选:B9、D【解析】利用最值的含义转化为不等式恒成立问题解决即可【详解】解:由题意可得,整理得,当时,不等式化简为恒成立,所以,当时,不等式化简为恒成立,所以,综上,,所以实数的取值范围是,故选:D10、A【解析】对于①,由三角形大边对大角的性质分析,对于②,根据题意利用正弦定理分析,对于③,利用余弦定理分析,对于④,利用三角形的面积公式分析判断【详解】对于①,根据题意,图2,它是由三个全等的钝角三角形与一个小等边三角形拼成的一个大等边三角形,故,,所以这三个全等的钝角三角形不可能是等腰三角形,故①正确;对于②,由题知,在中,,,,所以,所以由正弦定理得解得,因为,所以,故②正确;对于③,不妨设,所以在中,由余弦定理得,代入数据得,所以,所以,故③错误;对于④,若是的中点,则,所以,故④正确.故选:A第II卷(非选择题11、A【解析】由切线的性质,可得,,再结合椭圆定义,即得解【详解】因为过点的直线圆的切线,,,所以由椭圆定义可得,可得椭圆的离心率故选:A12、A【解析】根据事件的关系进行判断即可.【详解】由题意可知,事件与为互斥事件,但事件不是必然事件,所以,事件与事件是互斥事件,不是对立事件.故选:A.【点睛】本题考查事件关系的判断,考查互斥事件和对立事件概率的理解,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由等差数列和等比数列的通项公式,可得,由不在集合中,在集合中,也在集合中,推得不在数列的前50项内,则数列的前50项中包括的前48项和数列中的3和27,结合等差数列的求和公式,即可求解.【详解】由题意,集合构成数列是首项为1,公差为4的等差数列,集合构成数列是首项为1,公比为3的等比数列,可得,又由不在集合中,在集合中,也在集合中,因为,解得,此时,所以不在数列的前50项内,则数列的前50项的和为.故答案为:.14、【解析】根据抛物线的聚焦特点,经过抛物线后经过抛物线焦点,再经直线反射后经过点,则根据反射特点,列出相关方程,解出方程即可.【详解】设光线与抛物线的交点为,抛物线的焦点为,则可得:抛物线的焦点为:则直线的方程为:设直线与直线的交点为,则有:解得:则过点且垂直于的直线的方程为:根据题意可知:点关于直线的对称点在直线上设点,的中点为,则有:直线垂直于,则有:点在直线上,则有:点在直线上,则有:化简得:又故故答案为:【点睛】直线关于直线对称对称,利用中点坐标公式和直线与直线垂直的特点建立方程,根据题意列出隐含的方程是关键15、【解析】利用双曲线的定义、离心率的计算公式、两角和差的正弦公式即可得出.【详解】由可得,根据双曲线的定义可得:,.故答案为:16、2【解析】第一步找出数列周期,第二步利用周期性求和.【详解】,,,,,,可知数列{}是周期为4的周期数列,所以故答案为:2.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)①或;②过定点、,理由见解析.【解析】(1)由焦点三角形的周长、离心率求椭圆参数,即可得椭圆方程.(2)①由(1)可得,结合椭圆的定义求,即可确定的坐标;②由题设,求直线、的方程,进而求、坐标,即可得为直径的圆的方程,令求横坐标,即可得定点.【小问1详解】由题设,易知:,可得,则,∴椭圆.【小问2详解】①由(1)知:,令,则,∴,解得,故,此时或②由(1),,,∴可令直线:,直线:,∴将代入直线可得:,,则圆心且半径为,∴为直径的圆为,当时,,又,∴,可得或.∴为直径的圆过定点、.【点睛】关键点点睛:第二问,应用点斜式写出直线、的方程,再求、坐标,根据定义求为直径的圆的方程,最后令及在椭圆上求定点.18、(1)(2)或【解析】(1)抛物线的方程为,利用抛物线的定义求出点N,代入抛物线方程即可求解.(2)设直线的方程为,将直线与抛物线方程联立,利用韦达定理以及焦半径公式可得或,即求.【小问1详解】抛物线的方程为,设,依题意,由抛物线定义,即.所以,又由,得,解得(舍去),所以抛物线的方程为.【小问2详解】由(1)得,设直线的方程为,,,由,得.因为,故所以.由题设知,解得或,因此直线方程为或.19、(1);(2)不能,理由见解析.【解析】(1)设甲参加工作后第个月的月工资达到元,根据已知条件可得出关于的不等式,结合参考数据可求得结果;(2)分析可知从第个月开始到第个月偿还的本金是首项为为首项,以为公差的等差数列,计算出甲前个月偿还的本金,再由甲第个月的工资可得出结论.【小问1详解】解:设甲参加工作后第个月的月工资达到元,则,可得,,解得,所以,学生甲参加工作后第个月的月工资达到元.【小问2详解】解:因为甲前个月每个月偿还本金元,第个月开始到第个月每个月偿还的本金比前一个月多元,所以,从第个月开始到第个月偿还的本金是首项为为首项,以为公差的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度农产品加工与销售合同
- 肺活量计医疗器械市场发展现状调查及供需格局分析预测报告
- 姓名地址印写机市场发展现状调查及供需格局分析预测报告
- 2024年度标准仓库租赁合同
- 2024年度版权许可合同:我方为版权拥有方乙方为使用方
- 2024年度委托代建合同的工程质量与费用结算
- 淋浴器市场需求与消费特点分析
- 车载宠物座椅市场发展现状调查及供需格局分析预测报告
- 2024年度储油罐租赁合同:3000000立方米石油化工储存罐群
- 2024年度不锈钢材料行业发展规划与咨询合同
- 三年级上册数学课件-《练习五》北师大版 (共16张PPT)
- 五年级《欧洲民间故事》知识考试题库(含答案)
- 禁毒校本教材
- 《师说》 全省一等奖-完整版课件
- 车削工艺与技能训练《台阶轴的车削》课件
- 中国航天发展史模板
- 初中信息技术人教八年级上册 综合实践活动第2节 制作视频类数字故事
- 新人教精通版四年级上册小学英语期末测试卷
- 人教PEP小学三年级英语下册教学计划及进度表
- 铁路产品认证中心(CRCC)认证的铁路产品目录及标准
- NFA112005低、中、高倍数泡沫标准中译文
评论
0/150
提交评论