版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省粤西五校联考2023年数学高二上期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等差数列前项和为,且,,则此数列中绝对值最小的项为A.第5项 B.第6项C.第7项 D.第8项2.等比数列满足,,则()A.11 B.C.9 D.3.已知函数的导函数的图像如图所示,则下列判断正确的是()A.在区间上,函数增函数 B.在区间上,函数是减函数C.为函数的极小值点 D.2为函数的极大值点4.若直线先向右平移一个单位,再向下平移一个单位,然后与圆相切,则c的值为()A.8或-2 B.6或-4C.4或-6 D.2或-85.在等差数列中,,且构成等比数列,则公差等于()A.0 B.3C. D.0或36.下列说法正确的个数有()个①在中,若,则②是,,成等比数列的充要条件③直线是双曲线的一条渐近线④函数的导函数是,若,则是函数的极值点A.0 B.1C.2 D.37.双曲线的焦点坐标是()A. B.C. D.8.设,则的一个必要不充分条件为()A. B.C. D.9.双曲线的一条渐近线方程为,则双曲线的离心率为()A.2 B.5C. D.10.若空间中n个不同的点两两距离都相等,则正整数n的取值A.至多等于3 B.至多等于4C.等于5 D.大于511.双曲线C:的渐近线方程为()A. B.C. D.12.f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f(x)g(x)+f(x)g(x)<0且f(﹣1)=0则不等式f(x)g(x)<0的解集为A.(﹣1,0)∪(1,+∞) B.(﹣1,0)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞) D.(﹣∞,﹣1)∪(0,1)二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线C:的焦点为F,过M(4,0)的直线交C于A、B两点,设,的面积分别为、,则的最小值为______14.若直线与直线平行,则直线与之间的距离为_____15.已知正方体的棱长为为的中点,为面内一点.若点到面的距离与到直线的距离相等,则三棱锥体积的最小值为__________16.古希腊数学家阿基米德利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆的中心为原点,焦点,均在轴上,且,的面积为,则的标准方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线,直线,直线(1)若与的倾斜角互补,求m的值;(2)当m为何值时,三条直线能围成一个直角三角形18.(12分)已知O为坐标原点,双曲线C:(,)的离心率为,点P在双曲线C上,点,分别为双曲线C的左右焦点,.(1)求双曲线C的标准方程;(2)已知点,,设直线PA,PB的斜率分别为,.证明:为定值.19.(12分)已知椭圆的离心率为,右焦点为,斜率为1的直线与椭圆交于两点,以为底边作等腰三角形,顶点为.(1)求椭圆的方程;(2)求的面积.20.(12分)某书店刚刚上市了《中国古代数学史》,销售前该书店拟定了5种单价进行试销,每种单价(元)试销l天,得到如表单价(元)与销量(册)数据:单价(元)1819202122销量(册)6156504845(l)根据表中数据,请建立关于的回归直线方程:(2)预计今后的销售中,销量(册)与单价(元)服从(l)中的回归方程,已知每册书的成本是12元,书店为了获得最大利润,该册书的单价应定为多少元?附:,,,.21.(12分)已知函数.(1)求函数的极值;(2)若对恒成立,求实数a的取值范围.22.(10分)如图,在三棱柱中,平面ABC,,,,点D,E分别在棱和棱上,且,,M为棱的中点(1)求证:;(2)求直线AB与平面所成角的正弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】设等差数列的首项为,公差为,,则,又,则,说明数列为递减数列,前6项为正,第7项及后面的项为负,又,则,则在数列中绝对值最小的项为,选C.2、B【解析】由已知结合等比数列的性质即可求解.【详解】由数列是等比数列,得:,故选:B3、D【解析】根据导函数与原函数的关系可求解.【详解】对于A,在区间,,故A不正确;对于B,在区间,,故B不正确;对于C、D,由图可知在区间上单调递增,在区间上单调递减,且,所以为函数的极大值点,故C不正确,D正确.故选:D4、A【解析】求出平移后的直线方程,再利用直线与圆相切并借助点到直线距离公式列式计算作答.【详解】将直线先向右平移一个单位,再向下平移一个单位所得直线方程为,因直线与圆相切,从而得,即,解得或,所以c的值为8或-2.故选:A5、D【解析】根据,且构成等比数列,利用“”求解.【详解】设等差数列的公差为d,因为,且构成等比数列,所以,解得,故选:D6、B【解析】根据三角函数、等比数列、双曲线和导数知识逐项分析即可求解.【详解】①在中,则有,因,所以,又余弦函数在上单调递减,所以,故①正确,②当且时,此时,但是,,不成等比数列,故②错误,③由双曲线可得双曲线的渐近线为,故③错误,④“”是“是函数的极值点”的必要不充分条件,故④错误.故选:B.7、B【解析】根据双曲线的方程,求得,结合双曲线的几何性质,即可求解.【详解】由题意,双曲线,可得,所以,且双曲线的焦点再轴上,所以双曲线的焦点坐标为.故选:B.8、C【解析】利用必要条件和充分条件的定义判断.【详解】A选项:,,,所以是的充分不必要条件,A错误;B选项:,,所以是的非充分非必要条件,B错误;C选项:,,,所以是必要不充分条件,C正确;D选项:,,,所以是的非充分非必要条件,D错误.故选:C.9、D【解析】根据渐近线方程求得关系,结合离心率的计算公式,即可求得结果.【详解】因为双曲线的一条渐近线方程为,则;又双曲线离心率.故选:D.10、B【解析】先考虑平面上的情况:只有三个点的情况成立;再考虑空间里,只有四个点的情况成立,注意运用外接球和三角形三边的关系,即可判断解:考虑平面上,3个点两两距离相等,构成等边三角形,成立;4个点两两距离相等,由三角形的两边之和大于第三边,则不成立;n大于4,也不成立;空间中,4个点两两距离相等,构成一个正四面体,成立;若n>4,由于任三点不共线,当n=5时,考虑四个点构成的正四面体,第五个点,与它们距离相等,必为正四面体的外接球的球心,由三角形的两边之和大于三边,故不成立;同理n>5,不成立故选B点评:本题考查空间几何体的特征,主要考查空间两点的距离相等的情况,注意结合外接球和三角形的两边与第三边的关系,属于中档题和易错题11、D【解析】根据给定的双曲线方程直接求出其渐近线方程作答.【详解】双曲线C:的实半轴长,虚半轴长,即有,而双曲线C的焦点在y轴上,所以双曲线C的渐近线的方程为,即.故选:D12、A【解析】构造函数h(x)=f(x)g(x),由已知得当x<0时,h(x)<0,所以函数y=h(x)在(﹣∞,0)单调递减,又因为f(x),g(x)分别是定义在R上的奇函数和偶函数,得函数y=h(x)为R上的奇函数,所以函数y=h(x)在(0,+∞)单调递减,得到f(x)g(x)<0不等式的解集【详解】设h(x)=f(x)g(x),因为当x<0时,f(x)g(x)+f(x)g(x)<0,所以当x<0时,h(x)<0,所以函数y=h(x)在(﹣∞,0)单调递减,又因为f(x),g(x)分别是定义在R上的奇函数和偶函数,所以函数y=h(x)为R上的奇函数,所以函数y=h(x)在(0,+∞)单调递减,因为f(﹣1)=0,所以函数y=h(x)的大致图象如下:所以等式f(x)g(x)<0的解集为(﹣1,0)∪(1,+∞)故选A【点睛】本题考查导数乘法法则、导数的符号与函数单调性的关系;奇函数的单调性在对称区间上一致,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设直线的方程为,,与抛物线的方程联立整理得,由三角形的面积公式求得,再根据基本不等式可得答案.【详解】解:由抛物线C:得焦点,又直线交C于A、B两点,所以直线的斜率不为0,则设直线的方程为,,联立,整理得,则,又,,所以,又,当且仅当,即时取等号,所以的最小值为.故答案为:.14、【解析】由直线平行求参数m,再利用平行直线的距离公式求与之间的距离.【详解】由题设,,即,所以,,所以直线与之间的距离为.故答案为:15、##【解析】由题意可知,点在平面内的轨迹是以为焦点,直线为准线的抛物线,如图在底面建立平面直角坐标系,求出抛物线方程,直线的方程,将直线向抛物线平移,恰好与抛物线相切时,切点为点,此时的面积最小,则三棱锥体积的最小【详解】因为为面内一点,且点到面的距离与到直线的距离相等,所以点在平面内的轨迹是以为焦点,直线为准线的抛物线,如图在底面,以所在的直线为轴,以的中垂线为轴建立平面直角坐标系,则,设抛物线方程为,则,得,所以抛物线方程为,,直线的方程为,即,设与直线平行且与抛物线相切的直线方程为,由,得,由,得,所以与抛物线相切的直线为,此时切点为,且的面积最小,因为点到直线的距离为,所以的面积的最小值为,所以三棱锥体积的最小值为,故答案为:16、【解析】利用待定系数法列出关于的方程解出即可得结果.【详解】设的标准方程为,则解得所以的标准方程为故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)0,,.【解析】(1)根据题意得,进而求解得答案;(2)根据题意,分别讨论与垂直,与垂直,与垂直求解,并检验即可得答案【小问1详解】解:因为与的倾斜角互补,所以,直线变形为,故所以,解得【小问2详解】解:由题意,若和垂直可得:,解得,因为当时,,,,构不成三角形,当时,经验证符合题意;故;同理,若和垂直可得:,解得,舍去;若和垂直可得:,解得或,经验证符合题意;故m的值为:0,,.18、(1)(2)证明见解析【解析】(1)根据题意和双曲线的定义求出,结合离心率求出b,即可得出双曲线的标准方程;(2)设,根据两点的坐标即可求出、,化简计算即可.【小问1详解】由题知:由双曲线的定义知:,又因为,所以,所以所以,双曲线C的标准方程为小问2详解】设,则因为,,所以,所以19、(1)(2)【解析】(1)根据椭圆的简单几何性质知,又,写出椭圆的方程;(2)先斜截式设出直线,联立方程组,根据直线与圆锥曲线的位置关系,可得出中点为的坐标,再根据△为等腰三角形知,从而得的斜率为,求出,写出:,并计算,再根据点到直线距离公式求高,即可计算出面积【详解】(1)由已知得,,解得,又,所以椭圆的方程为(2)设直线的方程为,由得,①设、的坐标分别为,(),中点为,则,,因为是等腰△的底边,所以所以的斜率为,解得,此时方程①为解得,,所以,,所以,此时,点到直线:距离,所以△的面积考点:1、椭圆的简单几何性质;2、直线和椭圆的位置关系;3、椭圆的标准方程;4、点到直线的距离.【思路点晴】本题主要考查的是椭圆的方程,椭圆的简单几何性质,直线与椭圆的位置关系,点到直线的距离,属于难题.解决本类问题时,注意使用椭圆的几何性质,求得椭圆的标准方程;求三角形的面积需要求出底和高,在求解过程中要充分利用三角形是等腰三角形,进而知道定点与弦中点的连线垂直,这是解决问题的关键20、(1)(2)当单价应定为22.5元时,可获得最大利润【解析】(l)先计算的平均值,再代入公式计算得到(2)计算利润为:计算最大值.【详解】解:(1),,,所以对的回归直线方程为:(2)设获得的利润为,,因为二次函数的开口向下,所以当时,取最大值,所以当单价应定为22.5元时,可获得最大利润【点睛】本题考查了回归方程,函数的最值,意在考查学生的计算能力.21、(1)极大值为,无极小值(2)【解析】(1)求函数的导数,根据导数的正负判断极值点,代入原函数计算即可;(2)将变形,即对恒成立,然后构造函数,利用求导判定函数的单调性,进而确定实数a的取值范围..【小问1详解】对函数求导可得:,可知当时,时,,即可知在上单调递增,在上单调递减由上可知,的极大值为,无极小值【小问2详解】由对恒成立,当时,恒成立;当时,对恒成立,可变形为:对恒成立,令,则;求导可得:由(1)知即恒成立,当时,,则在上单调递增;又,因,故,,所以在上恒成立,当时,令,得,当时,在上单调递增,当时,在上单调递减,从而可知的最大值为,即,因此,对都有恒成立,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学技术课件教学课件
- 2024年度设备供应与安装合同
- 2024年度国际搬家集装箱租赁合同
- 2024年城市轨道交通系统集成与维护合同
- 2024光通信技术研发与生产合同
- 2024年度区块链技术应用研发合同
- 2024年度废旧物资回收利用合同
- 2024年度三人合伙知识产权协议
- 2024年床上用品批量订购合同
- 2024年度智能客服系统技术服务合同
- 卓越中层管理培训实务PPT培训课件
- 电力隧道龙门架安装方法
- 沪教牛津版八年级上册初二英语期中测试卷
- 外科学教案-急性化脓性腹膜炎
- 工程经济学教学教案
- DBJ51T 060-2016 四川省建设工程项目监理工作质量检查标准
- 2022年内蒙古通辽市中考语文试题及参考答案
- 优选楷行草钢笔字帖字课件
- 2020版高考历史大一轮复习-专题六-古代中国经济的基本结构与特点-19-古代中国的农业和手工业经济
- 《银行支持地方经济发展发言稿五篇材料》
- 国际酒店前厅管理手册前台接待14-01 外币兑换Foreign Exchange
评论
0/150
提交评论