版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省定远县示范高中2024届高二上数学期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过点且与直线平行的直线方程是()A. B.C. D.2.在某次赛车中,名参赛选手的成绩(单位:)全部介于到之间(包括和),将比赛成绩分为五组:第一组,第二组,···,第五组,其频率分布直方图如图所示.若成绩在内的选手可获奖,则这名选手中获奖的人数为A. B.C. D.3.已知是定义在上的奇函数,对任意两个不相等的正数、都有,记,,,则()A. B.C. D.4.已知数列中,,当时,,设,则数列的通项公式为()A. B.C. D.5.设为坐标原点,直线与抛物线C:交于,两点,若,则的焦点坐标为()A. B.C. D.6.如图,是对某位同学一学期次体育测试成绩(单位:分)进行统计得到的散点图,关于这位同学的成绩分析,下列结论错误的是()A.该同学的体育测试成绩总的趋势是在逐步提高,且次测试成绩的极差超过分B.该同学次测试成绩的众数是分C.该同学次测试成绩的中位数是分D.该同学次测试成绩与测试次数具有相关性,且呈正相关7.圆与直线的位置关系为()A.相切 B.相离C.相交 D.无法确定8.函数在区间上的最小值是()A. B.C. D.9.数学家欧拉在1765年发现,任意三角形的外心、重心、垂心位于同一条直线上,这条直线称为欧拉线.已知的顶点,,若其欧拉线的方程为,则顶点的坐标为()A. B.C. D.10.已知,为椭圆上关于短轴对称的两点,、分别为椭圆的上、下顶点,设,、分别为直线,的斜率,则的最小值为()A. B.C. D.11.已知双曲线的渐近线方程为,则该双曲线的离心率等于()A. B.C.2 D.412.已知椭圆的左右焦点分别为、,点在椭圆上,若、、是一个直角三角形的三个顶点,则点到轴的距离为A B.4C. D.二、填空题:本题共4小题,每小题5分,共20分。13.随机投掷一枚均匀的硬币两次,则两次都正面朝上的概率为______14.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来1524石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为_______石15.如图,椭圆的左右焦点为,,以为圆心的圆过原点,且与椭圆在第一象限交于点,若过、的直线与圆相切,则直线的斜率______;椭圆的离心率______.16.以点为圆心,为半径的圆的标准方程是_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某公园有一形状可抽象为圆柱的标志性景观建筑物,该建筑物底面直径为8米,在其南面有一条东西走向的观景直道,建筑物的东西两侧有与观景直道平行的两段辅道,观景直道与辅道距离10米.在建筑物底面中心O的东北方向米的点A处,有一全景摄像头,其安装高度低于建筑物的高度(1)在西辅道上距离建筑物1米处的游客,是否在该摄像头的监控范围内?(2)求观景直道不在该摄像头的监控范围内的长度18.(12分)已知椭圆的一个焦点坐标为,离心率为(1)求椭圆C的标准方程;(2)O为坐标原点,点P在椭圆C上,若的面积为,求点P的坐标19.(12分)如图,在四棱锥中,四边形是直角梯形,,,,为等边三角形.(1)证明:;(2)求点到平面的距离.20.(12分)已知二次函数.(1)若时,不等式恒成立,求实数的取值范围.(2)解关于的不等式(其中).21.(12分)已知抛物线:上的点到其准线的距离为5.(1)求抛物线的方程;(2)已知为原点,点在抛物线上,若的面积为6,求点的坐标.22.(10分)已如椭圆C:=1(a>b>0)的有顶点为M(2,0),且离心率e=,点A,B是椭圆C上异于点M的不同的两点(Ⅰ)求椭圆C的方程;(Ⅱ)设直线MA与直线MB的斜率分别为k1,k2,若k1•k2=,证明:直线AB一定过定点
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由题意设直线方程为,根据点在直线上求参数即可得方程.【详解】由题设,令直线方程为,所以,可得.所以直线方程为.故选:A.2、A【解析】先根据频率分布直方图确定成绩在内的频率,进而可求出结果.【详解】由题意可得:成绩在内的频率为,又本次赛车中,共名参赛选手,所以,这名选手中获奖的人数为.故选A【点睛】本题主要考查频率分布直方图,会根据频率分布直方图求频率即可,属于常考题型.3、A【解析】由题,可得是定义在上的偶函数,且在上单调递减,在上单调递增,根据函数的单调性,即可判断出的大小关系.【详解】设,由题,得,即,所以函数在上单调递减,因为是定义在R上的奇函数,所以是定义在上的偶函数,因此,,,即.故选:A【点睛】本题主要考查利用函数的单调性判断大小的问题,其中涉及到构造函数的运用.4、A【解析】根据递推关系式得到,进而利用累加法可求得结果【详解】数列中,,当时,,,,,且,,故选:A5、B【解析】根据题中所给的条件,结合抛物线的对称性,可知,从而可以确定出点的坐标,代入方程求得的值,进而求得其焦点坐标,得到结果.【详解】因为直线与抛物线交于两点,且,根据抛物线的对称性可以确定,所以,代入抛物线方程,求得,所以其焦点坐标为,故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.6、C【解析】根据给定的散点图,逐一分析各个选项即可判断作答.【详解】对于A,由散点图知,8次测试成绩总体是依次增大,极差为,A正确;对于B,散点图中8个数据的众数是48,B正确;对于C,散点图中的8个数由小到大排列,最中间两个数都是48,则次测试成绩的中位数是分,C不正确;对于D,散点图中8个点落在某条斜向上的直线附近,则次测试成绩与测试次数具有相关性,且呈正相关,D正确.故选:C7、C【解析】先计算出直线恒过定点,而点在圆内,所以圆与直线相交.【详解】直线可化为,所以恒过定点.把代入,有:,所以在圆内,所以圆与直线的位置关系为相交.故选:C8、B【解析】求出导函数,确定函数的单调性,得极值,并求出端点处函数值比较后可得最小值【详解】解:因为,于是函数在上单调递增,在上单调递减,,,得函数在区间上的最小值是故选:B9、A【解析】设,计算出重心坐标后代入欧拉方程,再求出外心坐标,根据外心的性质列出关于的方程,最后联立解方程即可.【详解】设,由重心坐标公式得,三角形的重心为,,代入欧拉线方程得:,整理得:①的中点为,,的中垂线方程为,即联立,解得的外心为则,整理得:②联立①②得:,或,当,时,重合,舍去顶点的坐标是故选:A【点睛】关键点睛:解决本题的关键一是求出外心,二是根据外心的性质列方程.10、A【解析】设出点,的坐标,并表示出两个斜率、,把代数式转化成与点的坐标相关的代数式,再与椭圆有公共点解决即可.【详解】椭圆中:,设则,则,,令,则它对应直线由整理得由判别式解得即,则的最小值为故选:A11、A【解析】由双曲线的渐近线方程,可得,再由的关系和离心率公式,计算即可得到所求值【详解】解:双曲线的渐近线方程为,由题意可得即,可得由可得,故选:A.12、D【解析】设椭圆短轴的一个端点为根据椭圆方程求得c,进而判断出,即得或令,进而可得点P到x轴的距离【详解】解:设椭圆短轴的一个端点为M由于,,;,只能或令,得,故选D【点睛】本题主要考查了椭圆的基本应用考查了学生推理和实际运算能力是基础题二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】列举出所有情况,利用古典概型的概率公式求解即可【详解】随机投掷一枚均匀的硬币两次,共有:正正,正反,反正,反反共4种情况,两次都是正面朝上的有:正正1种情况,所以两次都正面朝上的概率为,故答案为:14、168石【解析】由题意,得这批米内夹谷约为石考点:用样本估计总体15、①.②.【解析】根据直角三角形的性质求得,由此求得,结合椭圆的定义求得离心率.【详解】连接,由于是圆的切线,所以.在中,,所以,所以,所以直线的斜率.,根据椭圆的定义可知.故答案为:;【点睛】本小题主要考查椭圆的定义、椭圆的离心率,属于中档题.16、【解析】直接根据已知写出圆的标准方程得解.【详解】解:由题得圆的标准方程为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)不在(2)17.5米【解析】(1)以O为原点,正东方向为x轴正方向建立如图所示的直角坐标系,求出直线AB方程,判断直线AB与圆O的位置关系即可;(2)摄像头监控不会被建筑物遮挡,只需求出过点A的直线l与圆O相切时的直线方程即可.【小问1详解】以O为原点,正东方向为x轴正方向建立如图所示的直角坐标系则,观景直道所在直线的方程为依题意得:游客所在点为则直线AB的方程为,化简得,所以圆心O到直线AB的距离,故直线AB与圆O相交,所以游客不在该摄像头监控范围内.【小问2详解】由图易知:过点A的直线l与圆O相切或相离时,摄像头监控不会被建筑物遮挡,所以设直线l过A且恰与圆O相切,①若直线l垂直于x轴,则l不可能与圆O相切;②若直线l不垂直于x轴,设,整理得所以圆心O到直线l的距离为,解得或,所以直线l的方程为或,即或,设这两条直线与交于D,E由,解得,由,解得,所以,观景直道不在该摄像头的监控范围内的长度为17.5米.18、(1)(2)或或或【解析】(1)根据已知条件求得,由此求得椭圆的标准方程.(2)根据三角形的面积列方程,化简求得点的坐标.【小问1详解】设椭圆C的焦距为,由题意有,得,,故椭圆C的标准方程为;【小问2详解】设点P的坐标为,由的面积为,有,得,有,得,故点P的坐标为或或或19、(1)略;(2)【解析】(1)推导出BD⊥BC,PB⊥BC,从而BC⊥平面PBD,由此能证明PD⊥BC.(2)利用等体积求得点B到面的距离【详解】(1)∵在四棱锥P﹣ABCD中,四边形ABCD是直角梯形,DC=2AD=2AB=2,∠DAB=∠ADC=90°,PB,△PDC为等边三角形∴BC=BD,∴BD2+BC2=CD2,PB2+BC2=PC2,∴BD⊥BC,PB⊥BC,∵BD∩PB=B,∴BC⊥平面PBD,∵PD⊂平面PBD,∴PD⊥BC(2)由(1)知,,故故得点B到面PCD的距离为【点睛】本题考查线线垂直的证明,考查点面距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题20、(1);(2)答案见解析.【解析】(1)结合分离常数法、基本不等式求得的取值范围.(2)将原不等式转化为,对进行分类讨论,由此求得不等式的解集.【详解】(1)不等式即为:,当时,可变形为:,即.又,当且仅当,即时,等号成立,,即.实数的取值范围是:.(2)不等式,即,等价于,即,①当时,不等式整理为,解得:;当时,方程的两根为:,.②当时,可得,解不等式得:或;③当时,因为,解不等式得:;④当时,因为,不等式的解集为;⑤当时,因为,解不等式得:;综上所述,不等式的解集为:①当时,不等式解集为;②当时,不等式解集为;③当时,不等式解集为;④当时,不等式解集为;⑤当时,不等式解集为.21、(1)(2)或【解析】(1)结合抛物线的定义求得,由此求得抛物线的方程.(2)设,根据三角形的面积列方程,求得的值,进而求得点的坐标.【小问1详解】由抛物线的方程可得其准线方程,依抛物线的性质得,解得.∴抛物线的方程为.【小问2详解】将代入,得.所以,直线的方程为,即.设,则点到直线的距离,又,由题意得,解得或
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【课件】部编语文三上13 胡萝卜先生的长胡子【国家级】一
- 锂电池开路电压的温度导数-概述说明以及解释
- 《斑羚飞渡》课件
- 信息化规划图
- 一年级数学两位数加减一位数题竞赛练习训练题大全附答案
- 性格的含义微电影分库周欣然
- 新单位参保用户注册
- 意外伤害事故的防范与处理任务八意外事故界定类型
- 《同济大学数学系》课件
- 便利店员工培训方案
- 食品安全法-食品安全法基本内容课件
- CJT121再生树脂复合材料检查井盖
- 小学希望之星看图说话分类整理
- 高中区域地理非洲
- 2023年重庆市旅游业统计公报要点
- 789乘法练习题【模板】
- 第六单元 第7课时 解决问题(一)(教学设计)-三年级数学上册 人教版
- 广东轻工职业技术学院职业教育专业教学资源库建设管理办法
- GB/T 8905-2012六氟化硫电气设备中气体管理和检测导则
- GB/T 3499-2003原生镁锭
- GA/T 1073-2013生物样品血液、尿液中乙醇、甲醇、正丙醇、乙醛、丙酮、异丙醇和正丁醇的顶空-气相色谱检验方法
评论
0/150
提交评论