版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省福州八县一中2023-2024学年数学高二上期末达标检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是虚数单位,若,则复数z的虚部为()A.3 B.-3iC.-3 D.3i2.若函数在区间内存在最大值,则实数的取值范围是()A. B.C. D.3.已知函数为偶函数,则在处的切线方程为()A. B.C. D.4.已知命题,,则p的否定是()A. B.C. D.5.已知是双曲线的左焦点,为右顶点,是双曲线上的点,轴,若,则双曲线的离心率为()A. B.C. D.6.抛物线的焦点到准线的距离为()A. B.C. D.7.在直三棱柱中,,且,点是棱上的动点,则点到平面距离的最大值是()A. B.C.2 D.8.已知命题“若,则”,命题“若,则”,则下列命题中为真命题的是()A. B.C. D.9.△ABC的两个顶点坐标A(-4,0),B(4,0),它的周长是18,则顶点C的轨迹方程是()A. B.(y≠0)C. D.10.已知,,,若、、三个向量共面,则实数A3 B.5C.7 D.911.下列命题中,真命题的个数为()(1)是为双曲线的充要条件;(2)若,则;(3)若,,则;(4)椭圆上的点距点最近的距离为;A.个 B.个C.个 D.个12.如图所示,已知是椭圆的左、右焦点,为椭圆的上顶点,在轴上,,且是的中点,为坐标原点,若点到直线的距离为3,则椭圆的方程为()A B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.“五经”是《诗经》、《尚书》、《礼记》、《周易》、《春秋》的合称,贵为中国文化经典著作,所载内容及哲学思想至今仍具有积极意义和参考价值.某校计划开展“五经”经典诵读比赛活动,某班有、两位同学参赛,比赛时每位同学从这本书中随机抽取本选择其中的内容诵读,则、两位同学抽到同一本书的概率为______.14.已知数列满足,则其通项公式_______15.如图,在三棱锥中,,二面角的余弦值为,若三棱锥的体积为,则三棱锥外接球的表面积为______16.如果方程表示焦点在轴上的椭圆,那么实数的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面为正方形,,直线垂直于平面分别为的中点,直线与相交于点.(1)证明:与不垂直;(2)求二面角的余弦值.18.(12分)已知等差数列公差不为0,且成等比数列.(1)求数列的通项公式及其前n项和;(2)记,求数列的前n项和.19.(12分)已知,p:,q:(1)若p是q的充分不必要条件,求实数m的取值范围;(2)若,“p或q”为真命题,“p且q”为假命题,求实数x的取值范围20.(12分)已知是公比不为1的等比数列,,且为的等差中项.(1)求的公比;(2)求的通项公式及前n项和.21.(12分)已知圆C经过、两点,且圆心在直线上(1)求圆C的方程;(2)若直线经过点且与圆C相切,求直线的方程22.(10分)椭圆的一个顶点为,离心率(1)求椭圆方程;(2)若直线与椭圆交于不同的两点.若满足,求直线的方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由复数的除法运算可得答案.【详解】由题得,所以复数z的虚部为-3.故选:C.2、A【解析】利用函数的导数,求解函数的极值,推出最大值,然后转化列出不等式组求解的范围即可【详解】,或,∴在单调递减,在单调递增,在单调递减,∴f(x)有极大值,要使f(x)在上有最大值,则极大值3即为该最大值,则,又或,∴,综上,.故选:A.3、A【解析】根据函数是偶函数可得,可求出,求出函数在处的导数值即为切线斜率,即可求出切线方程.【详解】函数为偶函数,,即,解得,,则,,且,切线方程为,整理得.故选:A.【点睛】本题考查函数奇偶性的应用,考查利用导数求切线方程,属于基础题.4、A【解析】直接根据全称命题的否定写出结论.【详解】命题,为全称命题,故p的否定是:.故选:A【点睛】全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题5、C【解析】根据条件可得与,进而可得,,的关系,可得解.【详解】由已知得,设点,由轴,则,代入双曲线方程可得,即,又,所以,即,整理可得,故,解得或(舍),故选:C.6、B【解析】根据抛物线的几何性质可得选项.【详解】由得,所以,所以抛物线的焦点到准线的距离为1,故选:B.7、D【解析】建立空间直角坐标系,设出点的坐标,运用点到平面的距离公式,求出点到平面距离的最大值.【详解】解:以为原点,分别以,,所在直线为,,轴建立如图所示的空间直角坐标第,则,,,设点,故,,.设设平面的法向量为,则即,取,则.所以点到平面距离.当,即时,距离有最大值为.故选:D.【点睛】本题考查空间内点到面的距离最值问题,属于中档题.8、D【解析】利用指数函数的单调性可判断命题的真假,利用特殊值法可判断命题的真假,结合复合命题的真假可判断出各选项中命题的真假.【详解】对于命题,由于函数为上的增函数,当时,,命题为真命题;对于命题,若,取,,则,命题为假命题.所以,、、均为假命题,为真命题.故选:D.【点睛】本题考查简单命题和复合命题真假的判断,考查推理能力,属于基础题.9、D【解析】根据三角形的周长得出,再由椭圆的定义得顶点C的轨迹为以A,B为焦点的椭圆,去掉A,B,C共线的情况,可求得顶点C的轨迹方程.【详解】因为,所以,所以顶点C的轨迹为以A,B为焦点的椭圆,去掉A,B,C共线的情况,即,所以顶点C的轨迹方程是,故选:D.【点睛】本题考查椭圆的定义,由定义求得动点的轨迹方程,求解时,注意去掉不满足的点,属于基础题.10、A【解析】由空间向量共面原理得存在实数,,使得,由此能求出实数【详解】解:,,,、、三个向量共面,存在实数,,使得,即有:,解得,,实数故选:【点睛】本题考查空间向量共面原理的应用,属于基础题11、A【解析】利用方程表示双曲线求出的取值范围,利用集合的包含关系可判断(1)的正误;直接判断命题的正误,可判断(2)的正误;利用空间向量垂直的坐标表示可判断(3)的正误;利用椭圆的有界性可判断(4)的正误.【详解】对于(1),若曲线为双曲线,则,即,解得或,因为或,因此,是为双曲线的充分不必要条件,(1)错;对于(2),若,则或,(2)错;对于(3),,则,(3)对;对于(4),设点为椭圆上一点,则且,则点到点的距离为,(4)错.故选:A.12、D【解析】由题设可得,直线的方程为,点线距离公式表示到直线的距离,又联立解得即可得出答案.【详解】且,则△是等边三角形,设,则①,∴直线方程为,即,∴到直线的距离为②,又③,联立①②③,解得,,故椭圆方程为.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】计算出、两位同学各随机抽出一本书的结果种数,以及、两位同学抽到同一本书的结果种数,利用古典概型的概率公式可求得所求事件的概率.【详解】、两位同学抽到的结果都有种,由分步乘法计数原理可知,、两位同学各随机抽出一本书,共有种结果,而、两位同学抽到同一本书的结果有种,故所求概率为.故答案为:.14、【解析】构造法可得,由等比数列的定义写出的通项公式,进而可得.【详解】令,则,又,∴,故,而,∴是公比为,首项为,则,∴.故答案为:.15、【解析】取的中点,连接,,过点A作,垂足为,设,利用三角形的边角关系求出,利用锥体的体积公式求出的值,确定三棱锥外接球的球心,求解外接球的半径,由表面积公式求解即可【详解】取的中点,连接,,过点A作,交DE的延长线于点,所以为二面角的平面角,设,则,,所以,所以,EH=,因为三棱锥的体积为,所以,解得:,,设外接圆的圆心为,三棱锥外接球的球心为,连接,,,过点O作OF⊥AH于点F,则,,,,设,则,,由勾股定理得:,解得:,所以三棱锥外接球的半径满足,则三棱锥的外接球的表面积为故答案为:【点睛】本题考查了几何体的外接球问题,棱锥的体积公式的理解与应用,解题的关键是确定外接球球心的位置,三棱锥的外接球的球心在过各面外心且与此面垂直的直线上,由此结论可以找到外接球的球心,16、【解析】化简椭圆的方程为标准形式,列出不等式,即可求解.【详解】由题意,方程可化为,因为方程表示焦点在轴上的椭圆,可得,解得,实数的取值范围是.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,求出点的坐标,计算得出,即可证得结论成立;或利用反证法;(2)利用空间向量法即求.【小问1详解】方法一:如图以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则、、、、设,因为,,因为,所以,得,即点,因为,,所以,故与不垂直方法二:假设与垂直,又直线平面平面,所以.而与相交,所以平面又平面,从而又已知是正方形,所以与不垂直,这产生矛盾,所以假设不成立,即与不垂直得证.【小问2详解】设平面的法向量为,又,因为,所以,令,得.设平面的法向量为,因为,所以,令,得.因为.显然二面角为钝二面角,所以二面角的余弦值是.18、(1),(2)【解析】(1)根据分式的合分比性质以及等差数列的性质即可求出;(2)根据裂项相消法即可求出【小问1详解】由题意:,即,又∵,∴,∴,∴,.【小问2详解】因为,∴.19、(1)(2)或【解析】(1)根据命题对应的集合是命题对应的集合的真子集列式解得结果即可得解;(2)“p或q”为真命题,“p且q”为假命题,等价于与一真一假,分两种情况列式可得结果.【详解】(1)因为p:对应的集合为,q:对应的集合为,且p是q的充分不必要条件,所以,所以,解得.(2),当时,,因为“p或q”为真命题,“p且q”为假命题,所以与一真一假,当真时,假,所以,此不等式组无解;当真时,假,所以,解得或.综上所述:实数x的取值范围是或.【点睛】结论点睛:本题考查由充分不必要条件求参数取值范围,一般可根据如下规则转化:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)是的充分不必要条件,则对应集合是对应集合的真子集;(3)是的充分必要条件,则对应集合与对应集合相等;(4)是的既不充分又不必要条件,对的集合与对应集合互不包含20、(1)(2),【解析】(1)设数列公比为,根据列出方程,即可求解;(2):由(1)得到,利用等比数列的求和公式,即可求解.【小问1详解】解:设数列公比为,因为为的等差中项,可得,即,即,解得或(舍去),所以等比数列的公比为.【小问2详解】解:由(1)知且,可得,所以.21、(1);(2)【解析】(1)根据圆心在弦的垂直平分线上,先求出弦的垂直平分线的方程与联立可求得圆心坐标,再用两点间的距离公式求得半径,进而求得圆的方程;(2)当直线斜率不存在时,与圆相切,方程为;当直线斜率存在时,设斜率为,写出其点斜式方程,利用圆心到直线的距离等于半径建立方程求解出的值.试题解析:(1)依题意知线段的中点坐标是,直线的斜率为,故线段的中垂线方程是即,解方程组得,即圆心的坐标为,圆的半径,故圆的方程是(2)若直线斜率不存在,则直线方程是,与圆相离,不合题意;若直线斜率存在,可设直线方程是,即,因为直线与圆相切,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安徽省宿州市省、市示范高中2024-2025学年高一上学期期中考政治试题 含解析
- 电瓶外壳合同范例
- 租赁安全合同范例
- 旅游住宿舍租房合同范例
- 2024年度版权许可合同:音乐作品出版许可协议
- 2024版二手版权转让与授权使用合同
- 包装岗位安全生产责任制范文(2篇)
- 二零二四年度煤炭采购合同属性说明3篇
- 台式钻床安全技术操作维护规程模版(2篇)
- 乙醇购销合同范例
- 高中教学经验交流发言稿
- 广东开放改革开放史(本专23春)-第七单元形成性考核0
- 食品安全法-食品安全法基本内容课件
- 胎心监护及判读-课件
- CJT121再生树脂复合材料检查井盖
- 小学希望之星看图说话分类整理
- 高中区域地理非洲
- 2023年重庆市旅游业统计公报要点
- 789乘法练习题【模板】
- 第六单元 第7课时 解决问题(一)(教学设计)-三年级数学上册 人教版
- 广东轻工职业技术学院职业教育专业教学资源库建设管理办法
评论
0/150
提交评论