版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省宁德一中等重点中学2023年高三第一次月考-数学试题试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圈为阳数,黑点为阴数,若从阴数和阳数中各取一数,则其差的绝对值为5的概率为A. B. C. D.2.已知函数,其中,记函数满足条件:为事件,则事件发生的概率为A. B.C. D.3.椭圆的焦点为,点在椭圆上,若,则的大小为()A. B. C. D.4.已知,则()A. B. C. D.5.相传黄帝时代,在制定乐律时,用“三分损益”的方法得到不同的竹管,吹出不同的音调.如图的程序是与“三分损益”结合的计算过程,若输入的的值为1,输出的的值为()A. B. C. D.6.已知,,,则的最小值为()A. B. C. D.7.将3个黑球3个白球和1个红球排成一排,各小球除了颜色以外其他属性均相同,则相同颜色的小球不相邻的排法共有()A.14种 B.15种 C.16种 D.18种8.已知数列为等比数列,若,且,则()A. B.或 C. D.9.已知函数若函数在上零点最多,则实数的取值范围是()A. B. C. D.10.欧拉公式为,(虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,表示的复数位于复平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知等差数列{an},则“a2>a1”是“数列{an}为单调递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件12.已知集合,,,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在的展开式中,所有的奇数次幂项的系数和为-64,则实数的值为__________.14.已知为等差数列,为其前n项和,若,,则_______.15.展开式中项系数为160,则的值为______.16.“石头、剪子、布”是大家熟悉的二人游戏,其规则是:在石头、剪子和布中,二人各随机选出一种,若相同则平局;若不同,则石头克剪子,剪子克布,布克石头.甲、乙两人玩一次该游戏,则甲不输的概率是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,设、、分别为角、、的对边,记的面积为,且.(1)求角的大小;(2)若,,求的值.18.(12分)的内角,,的对边分别为,,已知,.(1)求;(2)若的面积,求.19.(12分)已知动圆过定点,且与直线相切,动圆圆心的轨迹为,过作斜率为的直线与交于两点,过分别作的切线,两切线的交点为,直线与交于两点.(1)证明:点始终在直线上且;(2)求四边形的面积的最小值.20.(12分)在三角形ABC中,角A,B,C的对边分别为a,b,c,若,角为钝角,(1)求的值;(2)求边的长.21.(12分)已知函数(1)求函数的单调递增区间(2)记函数的图象为曲线,设点是曲线上不同两点,如果在曲线上存在点,使得①;②曲线在点M处的切线平行于直线AB,则称函数存在“中值和谐切线”,当时,函数是否存在“中值和谐切线”请说明理由22.(10分)已知函数.(1)当a=2时,求不等式的解集;(2)设函数.当时,,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
阳数:,阴数:,然后分析阴数和阳数差的绝对值为5的情况数,最后计算相应概率.【详解】因为阳数:,阴数:,所以从阴数和阳数中各取一数差的绝对值有:个,满足差的绝对值为5的有:共个,则.故选:A.【点睛】本题考查实际背景下古典概型的计算,难度一般.古典概型的概率计算公式:.2、D【解析】
由得,分别以为横纵坐标建立如图所示平面直角坐标系,由图可知,.3、C【解析】
根据椭圆的定义可得,,再利用余弦定理即可得到结论.【详解】由题意,,,又,则,由余弦定理可得.故.故选:C.【点睛】本题考查椭圆的定义,考查余弦定理,考查运算能力,属于基础题.4、D【解析】
根据指数函数的单调性,即当底数大于1时单调递增,当底数大于零小于1时单调递减,对选项逐一验证即可得到正确答案.【详解】因为,所以,所以是减函数,又因为,所以,,所以,,所以A,B两项均错;又,所以,所以C错;对于D,,所以,故选D.【点睛】这个题目考查的是应用不等式的性质和指对函数的单调性比较大小,两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系.5、B【解析】
根据循环语句,输入,执行循环语句即可计算出结果.【详解】输入,由题意执行循环结构程序框图,可得:第次循环:,,不满足判断条件;第次循环:,,不满足判断条件;第次循环:,,满足判断条件;输出结果.故选:【点睛】本题考查了循环语句的程序框图,求输出的结果,解答此类题目时结合循环的条件进行计算,需要注意跳出循环的判定语句,本题较为基础.6、B【解析】,选B7、D【解析】
采取分类计数和分步计数相结合的方法,分两种情况具体讨论,一种是黑白依次相间,一种是开始仅有两个相同颜色的排在一起【详解】首先将黑球和白球排列好,再插入红球.情况1:黑球和白球按照黑白相间排列(“黑白黑白黑白”或“白黑白黑白黑”),此时将红球插入6个球组成的7个空中即可,因此共有2×7=14种;情况2:黑球或白球中仅有两个相同颜色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此时红球只能插入两个相同颜色的球之中,共4种.综上所述,共有14+4=18种.故选:D【点睛】本题考查排列组合公式的具体应用,插空法的应用,属于基础题8、A【解析】
根据等比数列的性质可得,通分化简即可.【详解】由题意,数列为等比数列,则,又,即,所以,,.故选:A.【点睛】本题考查了等比数列的性质,考查了推理能力与运算能力,属于基础题.9、D【解析】
将函数的零点个数问题转化为函数与直线的交点的个数问题,画出函数的图象,易知直线过定点,故与在时的图象必有两个交点,故只需与在时的图象有两个交点,再与切线问题相结合,即可求解.【详解】由图知与有个公共点即可,即,当设切点,则,.故选:D.【点睛】本题考查了函数的零点个数的问题,曲线的切线问题,注意运用转化思想和数形结合思想,属于较难的压轴题.10、A【解析】
计算,得到答案.【详解】根据题意,故,表示的复数在第一象限.故选:.【点睛】本题考查了复数的计算,意在考查学生的计算能力和理解能力.11、C【解析】试题分析:根据充分条件和必要条件的定义进行判断即可.解:在等差数列{an}中,若a2>a1,则d>0,即数列{an}为单调递增数列,若数列{an}为单调递增数列,则a2>a1,成立,即“a2>a1”是“数列{an}为单调递增数列”充分必要条件,故选C.考点:必要条件、充分条件与充要条件的判断.12、D【解析】
根据集合的基本运算即可求解.【详解】解:,,,则故选:D.【点睛】本题主要考查集合的基本运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、3或-1【解析】
设,分别令、,两式相减即可得,即可得解.【详解】设,令,则①,令,则②,则①-②得,则,解得或.故答案为:3或-1.【点睛】本题考查了二项式定理的应用,考查了运算能力,属于中档题.14、1【解析】试题分析:因为是等差数列,所以,即,又,所以,所以.故答案为1.【考点】等差数列的基本性质【名师点睛】在等差数列五个基本量,,,,中,已知其中三个量,可以根据已知条件,结合等差数列的通项公式、前项和公式列出关于基本量的方程(组)来求余下的两个量,计算时须注意整体代换思想及方程思想的应用.15、-2【解析】
表示该二项式的展开式的第r+1项,令其指数为3,再代回原表达式构建方程求得答案.【详解】该二项式的展开式的第r+1项为令,所以,则故答案为:【点睛】本题考查由二项式指定项的系数求参数,属于简单题.16、【解析】
用树状图法列举出所有情况,得出甲不输的结果数,再计算即得.【详解】由题得,甲、乙两人玩一次该游戏,共有9种情况,其中甲不输有6种可能,故概率为.故答案为:【点睛】本题考查随机事件的概率,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)由三角形面积公式,平面向量数量积的运算可得,结合范围,可求,进而可求的值.(2)利用同角三角函数基本关系式可求,利用两角和的正弦函数公式可求的值,由正弦定理可求得的值.【详解】解:(1)由,得,因为,所以,可得:.(2)中,,所以.所以:,由正弦定理,得,解得,【点睛】本题主要考查了三角形面积公式,平面向量数量积的运算,同角三角函数基本关系式,两角和的正弦函数公式,正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.18、(1);(2)【解析】
试题分析:(1)根据余弦定理求出B,带入条件求出,利用同角三角函数关系求其余弦,再利用两角差的余弦定理即可求出;(2)根据(1)及面积公式可得,利用正弦定理即可求出.试题解析:(1)由,得,∴.∵,∴.由,得,∴.∴.(2)由(1),得.由及题设条件,得,∴.由,得,∴,∴.点睛:解决三角形中的角边问题时,要根据条件选择正余弦定理,将问题转化统一为边的问题或角的问题,利用三角中两角和差等公式处理,特别注意内角和定理的运用,涉及三角形面积最值问题时,注意均值不等式的利用,特别求角的时候,要注意分析角的范围,才能写出角的大小.19、(1)见解析(2)最小值为1.【解析】
(1)根据抛物线的定义,判断出的轨迹为抛物线,并由此求得轨迹的方程.设出两点的坐标,利用导数求得切线的方程,由此求得点的坐标.写出直线的方程,联立直线的方程和曲线的方程,根据韦达定理求得点的坐标,并由此判断出始终在直线上,且.(2)设直线的倾斜角为,求得的表达式,求得的表达式,由此求得四边形的面积的表达式进而求得四边形的面积的最小值.【详解】(1)∵动圆过定点,且与直线相切,∴动圆圆心到定点和定直线的距离相等,∴动圆圆心的轨迹是以为焦点的抛物线,∴轨迹的方程为:,设,∴直线的方程为:,即:①,同理,直线的方程为:②,由①②可得:,直线方程为:,联立可得:,,∴点始终在直线上且;(2)设直线的倾斜角为,由(1)可得:,,∴四边形的面积为:,当且仅当或,即时取等号,∴四边形的面积的最小值为1.【点睛】本小题主要考查动点轨迹方程的求法,考查直线和抛物线的位置关系,考查抛物线中四边形面积的最值的计算,考查运算求解能力,属于中档题.20、(1)(2)【解析】
(1)由,分别求得,得到答案;(2)利用正弦定理得到,利用余弦定理解出.【详解】(1)因为角为钝角,,所以,又,所以,且,所以.(2)因为,且,所以,又,则,所以.21、(1)见解析(2)不存在,见解析【解析】
(1)求出函数的导数,通过讨论的范围求出函数的单调区间即可;(2)求出函数的导数,结合导数的几何意义,再令,转化为方程有解问题,即可说明.【详解】(1)函数的定义域为,所以当时,;,所以函数在上单调递增当时,①当时,函数在上递增②,显然无增区间;③当时,,函数在上递增,综上当函数在上单调递增.当时函数在上单调递增;当时函数无单调递增区间当时函数在上单调递增
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025北京市机器买卖合同
- 2025二手房配合贷款合同
- 网签版居间工程合同
- 买卖地皮押金合同范例
- 工地营销合同范例
- 学校装修安全合同范例
- 房屋无证买卖合同范例
- 机油保养套餐合同范例
- 个人销售砂石合同范例
- 房产代购合同范例
- 2024年度共享办公空间租赁合同2篇
- 《血气分析的临床应》课件
- 2024年四级品酒师资格认证考试题库(浓缩400题)
- 国家电投《新能源电站单位千瓦造价标准值(2024)》
- 小儿全麻患者术后护理
- 山东省临沂市2023-2024学年高二上学期期末考试政治试题 含答案
- GB 1886.342-2021食品安全国家标准食品添加剂硫酸铝铵
- 定喘神奇丹_辨证录卷四_方剂树
- 不知不觉也是牛仔元老了转一篇日牛知识贴.doc
- 六年级上册数学单元测试第七单元检测卷∣苏教版
- 流量变送器设计毕业设计
评论
0/150
提交评论