版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届临汾市第一中学数学高二上期末检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题:,使;命题:,都有,则下列结论正确的是()A.命题“”是真命题: B.命题“”是假命题:C.命题“”是假命题: D.命题“”是假命题2.已知奇函数,则的解集为()A. B.C. D.3.已知向量,,且,,,则一定共线的三点是()A.A,B,D B.A,B,CC.B,C,D D.A,C,D4.已知椭圆的左顶点为,上顶点为,右焦点为,若,则椭圆的离心率的取值范围是()A. B.C. D.5.已知向量,,且,则实数等于()A1 B.2C. D.6.设为等差数列的前项和,,,则A.-6 B.-4C.-2 D.27.下列四个命题中,为真命题的是()A.若a>b,则ac2>bc2B.若a>b,c>d,则a﹣c>b﹣dC.若a>|b|,则a2>b2D.若a>b,则8.将一枚均匀的骰子先后抛掷3次,至少出现两次点数为3的概率为()A. B.C. D.9.椭圆以坐标轴为对称轴,经过点,且长轴长是短轴长的倍,则椭圆的标准方程为()A. B.C.或 D.或10.下列问题中是古典概型的是A.种下一粒杨树种子,求其能长成大树的概率B.掷一颗质地不均匀的骰子,求出现1点的概率C.在区间[1,4]上任取一数,求这个数大于1.5概率D.同时掷两枚质地均匀的骰子,求向上的点数之和是5的概率11.如图,在平行六面体(底面为平行四边形的四棱柱)中,E为延长线上一点,,则=()A. B.C. D.12.已知实数,满足不等式组,则的最小值为()A2 B.3C.4 D.5二、填空题:本题共4小题,每小题5分,共20分。13.若一个球表面积为,则该球的半径为____________14.椭圆C:的左、右焦点分别为,,P为椭圆上异于左右顶点的任意一点,、的中点分别为M、N,O为坐标原点,四边形OMPN的周长为4,则的周长是_____15.若“x2-x-6>0”是“x>a”的必要不充分条件,则a的最小值为________.16.不等式的解集是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设:实数满足,:实数满足.(1)若,且为真,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.18.(12分)若分别是椭圆的左、右焦点,是该椭圆上的一个动点,且(1)求椭圆的方程(2)是否存在过定点的直线与椭圆交于不同的两点,使(其中为坐标原点)?若存在,求出直线的斜率;若不存在,说明理由19.(12分)过点作圆的两条切线,切点分别为A,B;(1)求直线AB的方程;(2)若M为圆上的一点,求面积的最大值20.(12分)已知抛物线过点.(1)求抛物线方程;(2)若直线与抛物线交于两点两点在轴的两侧,且,求证:过定点.21.(12分)已知圆,直线(1)求证:对,直线l与圆C总有两个不同交点;(2)当时,求直线l被圆C截得的弦长22.(10分)已知函数.(1)证明:;(2)若函数有两个零点,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据正弦函数的性质判断命题为假命题,由判断命题为真命题,从而得出答案.【详解】因为的值域为,所以命题为假命题因为,所以命题为真命题则命题“”是假命题,命题“”是假命题,命题“”是真命题,命题“”是真命题故选:B2、A【解析】先由求出的值,进而可得的解析式,对求导,利用基本不等式可判断恒成立,可判断的单调性,根据单调性脱掉,再解不等式即可.【详解】的定义域为,因为是奇函数,所以,可得:,所以,经检验是奇函数,符合题意,所以,因为,所以,当且仅当即时等号成立,所以在上单调递增,由可得,即,解得:或,所以的解集为,故选:A.3、A【解析】由已知,分别表示出选项对应的向量,然后利用平面向量共线定理进行判断即可完成求解.【详解】因,,,选项A,,,若A,B,D三点共线,则,即,解得,故该选项正确;选项B,,,若A,B,C三点共线,则,即,解得不存,故该选项错误;选项C,,,若B,C,D三点共线,则,即,解得不存在,故该选项错误;选项D,,,若A,C,D三点共线,则,即,解得不存在,故该选项错误;故选:A.4、B【解析】根据题意得到,根据,化简得到,进而得到离心率的不等式,即可求解.【详解】由题意,椭圆的左顶点为,上顶点为,所以,,因为,可得,即,又由,可得,可得,解得,又因为椭圆的离心率,所以,即椭圆的离心率为.故选:B.【点睛】求解椭圆或双曲线离心率的三种方法:1、定义法:通过已知条件列出方程组,求得得值,根据离心率的定义求解离心率;2、齐次式法:由已知条件得出关于的二元齐次方程,然后转化为关于的一元二次方程求解;3、特殊值法:通过取特殊值或特殊位置,求出离心率.5、C【解析】利用空间向量垂直的坐标表示计算即可得解【详解】因向量,,且,则,解得,所以实数等于.故选:C6、A【解析】由已知得解得故选A考点:等差数列的通项公式和前项和公式7、C【解析】利用不等式的性质结合特殊值法依次判断即可【详解】当c=0时,A不成立;2>1,3>-1,而2-3<1-(-1),故B不成立;a=2,b=1时,,D不成立;由a>|b|知a>0,所以a2>b2,C正确故选:C8、D【解析】利用次独立重复试验中事件A恰好发生次的概率计算公式直接求解.【详解】解:将一枚均匀的筛子先后抛掷3次,每次出现点数为3的概率都是至少出现两次点数为3的概率为:故选:D9、C【解析】分情况讨论焦点所在位置及椭圆方程.【详解】当椭圆的焦点在轴上时,由题意过点,故,,椭圆方程为,当椭圆焦点在轴上时,,,椭圆方程为,故选:C.10、D【解析】A、B两项中的基本事件的发生不是等可能的;C项中基本事件的个数是无限多个;D项中基本事件的发生是等可能的,且是有限个.故选D【考点】古典概型的判断11、A【解析】根据空间向量的加减法运算法则,直接写出向量的表达式,即可得答案.【详解】=,故选:A.12、B【解析】画出可行域,找到最优解,得最值.【详解】画出不等式组对应的可行域如下:平行移动直线,当直线过点时,.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设球的半径为,代入球的表面积公式得答案【详解】解:设球的半径为,则,得,即或(舍去)故答案为:14、【解析】先证明则四边形OMPN是平行四边形,进而根据椭圆定义求出a,再求出c,最后求出答案.【详解】因为M,O,N分别为的中点,所以,则四边形OMPN是平行四边形,所以,由四边形OMPN的周长为4可知,,即,则,于是的周长是.故答案为:.15、3【解析】解出不等式x2-x-6>0,由“x2-x-6>0”是“x>a”的必要不充分条件,求出a的最小值.【详解】由x2-x-6>0,解得x<-2或x>3.因为“x2-x-6>0”是“x>a”的必要不充分条件,所以{x|x>a}是{x|x<-2或x>3}的真子集,即a≥3,故答案为:3.【点睛】本题考查充分条件和必要条件的应用,考查一元二次不等式的解法,属于基础题.16、【解析】把原不等式的右边移项到左边,通分计算后,根据分式不等式解法,然后转化为两个一元一次不等式组,注意分母不为0的要求,求出不等式组的解集即为原不等式的解集【详解】不等式得,故,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)首先分别求出、为真时参数的取值范围,再由为真,取并集即可;(2)首先解一元二次不等式,依题意是的必要不充分条件,则可推出,而不能推出,即可得到不等式组,解得即可;【小问1详解】解:当时,,即,解得,即为真时,实数的取值范围为实数满足,即,解得:,即为真时,实数的取值范围为因,所以,即;【小问2详解】解:由,即,所以,因为是的充分不必要条件,所以是的必要不充分条件,则可推出,而不能推出,则,解得;18、(1);(2)存在;【解析】(1)根据已知条件求得,由此求得椭圆的方程.(2)设出直线的方程并与椭圆方程联立,化简写出根与系数关系,利用列方程,化简求得直线的斜率.【小问1详解】依题意,得椭圆的方程为【小问2详解】存在.理由如下:显然当直线的斜率不存在,即时,不满足条件故由题意可设的方程为.由是直线与椭圆的两个不同的交点,设,由消去y,并整理,得,则,解得,由根与系数的关系得,,即存在斜率的直线与椭圆交于不同的两点,使19、(1)(2)【解析】(1)求出以为直径的圆的方程,结合已知圆的方程,将两圆方程相减可求得两圆公共弦所在直线方程;(2)求出圆上的点M到直线AB的距离的最大值,求出,利用三角形面积公式求得答案.【小问1详解】圆的圆心坐标为,半径为1,则的中点坐标为,,以为圆心,为直径的圆的方程为,由,得①,由,得②,①②得:直线的方程为;【小问2详解】圆心到直线的距离为故圆上的点M到直线的距离的最大值为,而,故面积的最大值为.20、(1);(2)证明见解析.【解析】(1)运用代入法直接求解即可;(2)设出直线的方程与抛物线方程联立,结合一元二次方程根与系数关系、平面向量数量积的坐标表示公式进行求解即可.【小问1详解】由已知可得:;【小问2详解】的斜率不为设,,∴OA→⋅因为直线与抛物线交于两点两点在轴的两侧,所以,即过定点.【点睛】关键点睛:运用一元二次方程根与系数关系是解题的关键.21、(1)证明见解析;(2).【解析】(1)由直线过定点,只需判断定点在圆内部,即可证结论.(2)由点线距离公式求弦心距,再利用半径、弦心距、弦长的几何关系求弦长即可.【小问1详解】直线恒过定点,又,所以点在圆的内部,所以直线与圆总有两个不同的交点,得证.【小问2详解】由题设,,又的圆心为,半径为,所以到直线的距离,所以所求弦长为22、(1)证明见解析;(2).【解析】(1)令,求导得到函数的增区间为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- KTV装修补充协议
- 4S店展厅木地板安装协议
- 部编版四年级上册道德与法治期末测试卷(含答案) (四)
- oa系统-日常管理及用户管理模块
- 2023-2024学年全国小学三年级下数学人教版模拟考试试卷(含答案解析)
- 专利技术入股合同协议书范本2024年
- 2024年辽宁客运从业资格证考试模板
- 2024年水电工承包合同
- 2024年宜宾客运上岗证模拟考试
- 2024年客运从业资格证网上继续教育
- 施工吊篮安全技术管理培训(PPT)
- 幼儿园大班社会:《四大发明》 课件
- 热电联产成本核算办法探讨
- 汉语拼音教学讲座课件
- 2022年海南省中考化学试卷(附答案)
- 上饶市广信区乡镇街道社区行政村统计表
- 小学数学人教二年级上册8数学广角-搭配二年级上册数学广角《搭配》第1课时教学设计
- 重大事故隐患治理方案-
- 人工血管动静脉内瘘术后护理课件
- 沪教牛津版八年级上册初二英语期末测试卷(5套)
- 清远市城市树木修剪技术指引(试行)
评论
0/150
提交评论