2024届辽宁省凤城市通远堡高级中学高二数学第一学期期末达标检测模拟试题含解析_第1页
2024届辽宁省凤城市通远堡高级中学高二数学第一学期期末达标检测模拟试题含解析_第2页
2024届辽宁省凤城市通远堡高级中学高二数学第一学期期末达标检测模拟试题含解析_第3页
2024届辽宁省凤城市通远堡高级中学高二数学第一学期期末达标检测模拟试题含解析_第4页
2024届辽宁省凤城市通远堡高级中学高二数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届辽宁省凤城市通远堡高级中学高二数学第一学期期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.命题“存在,使得”为真命题的一个充分不必要条件是()A. B.C. D.2.过双曲线的右顶点作斜率为的直线,该直线与双曲线的两条渐近线的交点分别为.若,则双曲线的离心率是A. B.C. D.3.设为等差数列的前项和,若,,则公差的值为()A. B.2C.3 D.44.已知椭圆与双曲线有共同的焦点,则()A.14 B.9C.4 D.25.设的内角A,B,C的对边分别为a,b,c,已知,,,则b等于()A. B.2C. D.46.2021年7月,某文学网站对该网站的数字媒体内容能否满足读者需要进行了调查,调查部门随机抽取了名读者,所得情况统计如下表所示:满意程度学生族上班族退休族满意一般不满意记满分为分,一般为分,不满意为分.设命题:按分层抽样方式从不满意的读者中抽取人,则退休族应抽取人;命题:样本中上班族对数字媒体内容满意程度的方差为.则下列命题中为真命题的是()A. B.C. D.7.已知椭圆的短轴长和焦距相等,则a的值为()A.1 B.C. D.8.已知等比数列的前项和为,若,,则()A.20 B.30C.40 D.509.已知变量x,y具有线性相关关系,它们之间的一组数据如下表所示,若y关于x的线性回归方程为,则m=()x1234y0.11.8m4A.3.1 B.4.3C.1.3 D.2.310.函数,则的值为()A. B.C. D.11.某几何体的三视图如图所示,则其对应的几何体是A. B.C. D.12.若函数的导函数在区间上是减函数,则函数在区间上的图象可能是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.圆锥的母线长为2,母线所在直线与圆锥的轴所成角为,则该圆锥的侧面积大小为____________.(结果保留)14.写出一个同时具有性质①②的函数___________.(不是常值函数),①为偶函数;②.15.如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x=_____________,y=_____________16.命题“,”为假命题,则实数a的取值范围是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在数列中,,.(1)证明:数列为等比数列,并求数列的通项公式;(2)求数列的前项和.18.(12分)同时抛掷两颗骰子,观察向上点数.(1)试表示“出现两个1点”这个事件相应的样本空间的子集;(2)求出现两个1点”的概率;(3)求“点数之和为7”的概率.19.(12分)在平面直角坐标系中,设点,直线,点P在直线l上移动,R是线段PF与y轴的交点,也是PF的中点.,(1)求动点Q的轨迹的方程E;(2)过点F作两条互相垂直的曲线E的弦AB、CD,设AB、CD的中点分别为M,N.求直线MN过定点R的坐标20.(12分)已知抛物线过点,是抛物线的焦点,直线交抛物线于另一点,为坐标原点.(1)求抛物线的方程和焦点的坐标;(2)抛物线的准线上是否存在点使,若存在请求出点坐标,若不存在请说明理由.21.(12分)如图,已知正方体的棱长为2,,,分别为,,的中点(1)求直线与直线所成角余弦值;(2)求点到平面的距离22.(10分)已知三角形ABC的内角A,B,C的对边分别为a,b,c,且(1)求角B;(2)若,角B的角平分线交AC于点D,,求CD的长

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】“存在,使得”为真命题,可得,利用二次函数的单调性即可得出.再利用充要条件的判定方法即可得出.【详解】解:因为“存在,使得”为真命题,所以,因此上述命题得个充分不必要条件是.故选:B.【点睛】本题考查了二次函数的单调性、充要条件的判定方法,考查了推理能力与计算能力,属于中档题.2、C【解析】直线l:y=-x+a与渐近线l1:bx-ay=0交于B,l与渐近线l2:bx+ay=0交于C,A(a,0),∴,∵,∴,b=2a,∴,∴,∴考点:直线与圆锥曲线的综合问题;双曲线的简单性质3、C【解析】根据等差数列前项和公式进行求解即可.【详解】,故选:C4、C【解析】根据给定条件结合椭圆、双曲线方程的特点直接列式计算作答.【详解】设椭圆半焦距为c,则,而椭圆与双曲线有共同的焦点,则在双曲线中,,即有,解得,所以.故选:C5、A【解析】由正弦定理求解即可.【详解】因为,所以故选:A6、A【解析】由抽样比再乘以可得退休族应抽取人数可判断命题,求出上班族对数字媒体内容满意程度的平均分,由方差公式计算方差可判断,再由复合命题的真假判断四个选项,即可得正确选项.【详解】因为退休族应抽取人,所以命题正确;样本中上班族对数字媒体内容满意程度的平均分为,方差为,命题正确,所以为真,、、为假命题,故选:7、A【解析】由题设及椭圆方程可得,即可求参数a的值.【详解】由题设易知:椭圆参数,即有,可得故选:A8、B【解析】根据等比数列前项和的性质进行求解即可.【详解】因为是等比数列,所以成等比数列,即成等比数列,显然,故选:B9、A【解析】先求得样本中心,代入回归方程,即可得答案.【详解】由题意得,又样本中心在回归方程上,所以,解得.故选:A10、B【解析】求出函数的导数,代入求值即可.【详解】函数,故,所以,故选:B11、A【解析】根据三视图即可还原几何体.【详解】根据三视图,特别注意到三视图中对角线的位置关系,容易判断A正确.【点睛】本题主要考查了三视图,属于中档题.12、A【解析】根据导数概念和几何意义判断【详解】由题意得,图象上某点处的切线斜率随增大而减小,满足要求的只有A故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题设知:圆锥的轴截面为等边三角形,进而求圆锥的底面周长,由扇形面积公式求圆锥的侧面积大小.【详解】由题设,圆锥的轴截面为等边三角形,又圆锥的母线长为2,∴底面半径为1,则底面周长为,∴圆锥的侧面积大小为.故答案为:.14、(答案不唯一)【解析】利用导函数周期和奇偶性构造导函数,再由导函数构造原函数列举即可.【详解】由知函数的周期为,则,同时满足为偶函数,所以满足条件.故答案为:(答案不唯一).15、①.3②.5【解析】根据茎叶图进行数据分析,列方程求出x、y.【详解】由题意,甲组数据为56,62,65,70+x,74;乙组数据为59,61,67,60+y,78.要使两组数据中位数相等,有65=60+y,所以y=5.又平均数相同,则,解得x=3.故答案为:3;5.16、【解析】写出原命题的否定,再利用二次型不等式恒成立求解作答.【详解】因命题“,”为假命题,则命题“,”为真命题,当时,恒成立,则,当时,必有,解得,所以实数a的取值范围是.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析,;(2).【解析】(1)利用等比数列的定义结合已知条件即可得到证明.(2)运用分组求和的方法,利用等比数列和等差数列前项和公式求解即可.【详解】(1)证明:∵,∴数列为首项是2,公比是2的等比数列.∴,∴.(2)由(1)知,,【点睛】本题考查等比数列的定义,通项公式的应用,考查等差数列和等比数列前项和公式的应用,考查分组求和的方法,属于基础题.18、(1)(2)(3)【解析】(1)由题意直接写出基本事件即可得出答案.(2)样本空间一共有个基本事件,由(1)可得答案.(3)列出“点数之和为7”的基本事件,从而可得答案.【小问1详解】“同时抛掷两颗骰子”的样本空间是{1,2,…,6;1,2,…,6},其中i、j分别是抛掷第一颗与第二颗骰子所得的点数.将“出现两个1点”这个事件用A表示,则事件A就是子集.【小问2详解】样本空间一共有个基本事件,它们是等可能的,从而“出现两个1点”的概率为.小问3详解】将“点数之和为7”这个事件用B表示,则{,,,,,},事件B共有6个基本事件,从而“点数之和为7”的概率为.19、(1)(2)【解析】(1)由图中的几何关系可知,故可知动点Q的轨迹E是以F为焦点,l为准线的抛物线,但不能和原点重合,即可直接写出抛物线的方程;(2)设出直线AB的方程,把点、的坐标代入抛物线方程,两式作差后,再利用中点坐标公式求出点M的坐标,同理求出点的坐标,即可求出直线MN的方程,最后可求出直线MN过哪一定点.【小问1详解】∵直线的方程为,点R是线段FP的中点且,∴RQ是线段FP的垂直平分线,∵,∴是点Q到直线l的距离,∵点Q在线段FP的垂直平分线,∴,则动点Q的轨迹E是以F为焦点,l为准线的抛物线,但不能和原点重合,即动点Q轨迹的方程为.【小问2详解】设,,由题意直线AB斜率存在且不为0,设直线AB的方程为,由已知得,两式作差可得,即,则,代入可得,即点M的坐标为,同理设,,直线的方程为,由已知得,两式作差可得,即,则,代入可得,即点的坐标为,则直线MN的斜率为,即方程为,整理得,故直线MN恒过定点.20、(1)抛物线的方程为,焦点坐标为(2)存在,且【解析】(1)根据点坐标求得,进而求得抛物线的方程和焦点的坐标.(2)设,根据列方程,化简求得的坐标.【小问1详解】将代入得,所以抛物线的方程为,焦点坐标为.【小问2详解】存在,理由如下:直线的方程为,或,即.抛物线的准线,设,,即,所以.即存在点使.21、(1)(2)【解析】(1)建立空间直角坐标系,利用向量法由求解;(1)建立空间直角坐标系,先取得平面的一个法向量,,,然后由求解【小问1详解】解:以为原点,为轴,为轴,为轴,建立空间直角坐标系.则,0,,,2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论