版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届辽宁省葫芦岛市第一中学高二上数学期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等差数列x,,,…的第四项为()A.5 B.6C.7 D.82.即空气质量指数,越小,表明空气质量越好,当不大于100时称空气质量为“优良”.如图是某市3月1日到12日的统计数据.则下列叙述正确的是A.这天的的中位数是B.天中超过天空气质量为“优良”C.从3月4日到9日,空气质量越来越好D.这天的的平均值为3.下列椭圆中,焦点坐标是的是()A. B.C. D.4.如图,O是坐标原点,P是双曲线右支上的一点,F是E的右焦点,延长PO,PF分别交E于Q,R两点,已知QF⊥FR,且,则E的离心率为()A. B.C. D.5.已知数列中,其前项和为,且满足,数列的前项和为,若对恒成立,则实数的值可以是()A. B.2C.3 D.6.记Sn为等差数列{an}的前n项和,给出下列4个条件:①a1=1;②a4=4;③S3=9;④S5=25,若只有一个条件不成立,则该条件为()A.① B.②C.③ D.④7.已知圆的圆心在x轴上,半径为1,且过点,圆:,则圆,的公共弦长为A. B.C. D.28.若圆与直线相切,则实数的值为()A. B.或3C. D.或9.如图,P为圆锥的顶点,O是圆锥底面的圆心,圆锥PO的轴截面PAE是边长为2的等边三角形,是底面圆的内接正三角形.则()A. B.C. D.10.已知三棱锥OABC,点M,N分别为AB,OC的中点,且,用表示,则等于()A. B.C. D.11.已知,,,执行如图所示的程序框图,输出值为()A. B.C. D.12.已知椭圆方程为,点在椭圆上,右焦点为F,过原点的直线与椭圆交于A,B两点,若,则椭圆的方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.抛物线的准线方程为_______.14.关于曲线C:1,有如下结论:①曲线C关于原点对称;②曲线C关于直线x±y=0对称;③曲线C是封闭图形,且封闭图形的面积大于2π;④曲线C不是封闭图形,且它与圆x2+y2=2无公共点;⑤曲线C与曲线D:|x|+|y|=2有4个公共点,这4点构成正方形其中正确结论的个数是_____15.已知圆,过点作圆O的切线,则切线方程为___________.16.设等差数列的前项和为,若,,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左,右顶点分别是,,且,是椭圆上异于,的不同的两点(1)若,证明:直线必过坐标原点;(2)设点是以为直径的圆和以为直径的圆的另一个交点,记线段的中点为,若,求动点的轨迹方程18.(12分)2021年7月25日,在东京奥运会自行车公路赛中,奥地利数学女博士安娜·基秣崔天以3小时52分45秒的成绩获得冠军,震惊了世界!广大网友惊呼“学好数理化,走遍天下都不怕”.某市对中学生的体能测试成绩与数学测试成绩进行分析,并从中随机抽取了200人进行抽样分析,得到下表(单位:人):体能一般体能优秀合计数学一般5050100数学优秀4060100合计90110200(1)根据以上数据,能否在犯错误的概率不超过0.10的前提下认为“体能优秀”还是“体能一般”与数学成绩有关?(结果精确到小数点后两位)(2)①现从抽取的数学优秀的人中,按“体能优秀”与“体能一般”这两类进行分层抽样抽取10人,然后,再从这10人中随机选出4人,求其中至少有2人是“体能优秀”的概率;②将频率视为概率,以样本估计总体,从该市中学生中随机抽取10人参加座谈会,记其中“体能优秀”的人数为X,求X的数学期望和方差参考公式:,其中参考数据:0.150.100.050.250.0102.0722.7063.8415.0246.63519.(12分)已知公差不为零的等差数列中,,且,,成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)若,求数列的前项和.20.(12分)公差不为0的等差数列中,,且成等比数列(1)求数列的通项公式;(2)设,数列的前n项和为.若,求的取值范围21.(12分)已知单调递增的等比数列满足:,且是,的等差中项(1)求数列的通项公式;(2)若,,求22.(10分)在中,角A,B,C所对的边分别为a,b,c,且.(1)求角A的大小;(2)若,且的面积为,求的周长.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据等差数列的定义求出x,求出公差,即可求出第四项.【详解】由题可知,等差数列公差d=(x+2)-x=2,故3x+6=x+2+2,故x=-1,故第四项为-1+(4-1)×2=5.故选:A.2、C【解析】这12天的AQI指数值的中位数是,故A不正确;这12天中,空气质量为“优良”的有95,85,77,67,72,92共6天,故B不正确;;从4日到9日,空气质量越来越好,,故C正确;这12天的指数值的平均值为110,故D不正确.故选C3、B【解析】根据给定条件逐一分析各选项中的椭圆焦点即可判断作答.【详解】对于A,椭圆的焦点在x轴上,A不是;对于B,椭圆,即,焦点在y轴上,半焦距,其焦点为,B是;对于C,椭圆,即,焦点在y轴上,半焦距,其焦点为,C不是;对于D,椭圆,即,焦点在y轴上,半焦距,其焦点为,D不是.故选:B4、B【解析】令双曲线E的左焦点为,连线即得,设,借助双曲线定义及直角用a表示出|PF|,,再借助即可得解.【详解】如图,令双曲线E的左焦点为,连接,由对称性可知,点线段中点,则四边形是平行四边形,而QF⊥FR,于是有是矩形,设,则,,,在中,,解得或m=0(舍去),从而有,中,,整理得,,所以双曲线E的离心率为故选:B5、D【解析】由求出,从而可以求,再根据已知条件不等式恒成立,可以进行适当放大即可.【详解】若n=1,则,故;若,则由得,故,所以,,又因为对恒成立,当时,则恒成立,当时,,所以,,,若n为奇数,则;若n为偶数,则,所以所以,对恒成立,必须满足.故选:D6、B【解析】根据等差数列通项公式及求和公式的基本量计算,对比即可得出结果.【详解】设等差数列{an}的公差为,,,,即,即.当,时,①③④均成立,②不成立.故选:B7、A【解析】根据题意设圆方程为:,代点即可求出,进而求出方程,两圆方程做差即可求得公共弦所在直线方程,再利用垂径定理去求弦长.【详解】设圆的圆心为,则其标准方程为:,将点代入方程,解得,故方程为:,两圆,方程作差得其公共弦所在直线方程为:,圆心到该直线的距离为,因此公共弦长为,故选:A.【点睛】本题综合考查圆的方程及直线与圆,圆与圆位置关系,属于中档题.一般遇见直线与圆相交问题时,常利用垂径定理解决问题.8、D【解析】利用圆心到直线的距离等于半径可得答案.【详解】若圆与直线相切,则到直线的距离为,所以,解得,或.故选:D.9、B【解析】先求出,再利用向量的线性运算和数量积计算求解.【详解】解:由题得,,故选:B10、D【解析】根据空间向量的加法、减法和数乘运算可得结果.【详解】.故选:D11、A【解析】模拟程序运行可得程序框图的功能是计算并输出三个数中的最小数,计算三个数判断作答.【详解】模拟程序运行可得程序框图的功能是计算并输出三个数中的最小数,因,,,则,不成立,则,不成立,则,所以应输出的x值为.故选:A12、A【解析】根据椭圆的性质可得,则椭圆方程可求.【详解】由点在椭圆上得,由椭圆的对称性可得,则,故椭圆方程为.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由抛物线的标准方程为x2=y,得抛物线是焦点在y轴正半轴的抛物线,2p=1,∴其准线方程是y=,故答案为14、4【解析】直接利用曲线的性质,对称性的应用可判断①②;求出可判断③;联立方程,解方程组可判断④⑤的结论【详解】对于①,将方程中的x换为﹣x,y换为﹣y,方程不变,曲线C关于原点对称,故①正确;对于②,将方程中的x换为﹣y,把y换成﹣x,方程不变,曲线C关于直线x±y=0对称,故②正确;对于③,由方程得,故曲线C不是封闭图形,故③错误;对于④,曲线C:,不是封闭图形,联立整理可得:,方程无解,故④正确;对于⑤,曲线C与曲线D:由于,解得,根据对称性,可得公共点为,故曲线C与曲线D有四个交点,这4点构成正方形,故⑤正确故答案为:415、或【解析】首先判断点圆位置关系,再设切线方程并联立圆的方程,根据所得方程求参数k,即可写出切线方程.【详解】由题设,,故在圆外,根据圆及,知:过作圆O的切线斜率一定存在,∴可设切线为,联立圆的方程,整理得,∴,解得或.∴切线方程为或.故答案为:或.16、77【解析】依题意利用等差中项求得,进而求得.【详解】依题意可得,则,故故答案为:77.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)设,首先证明,从而可得到,即得到;进而可得到四边形为平行四边形;再根据为的中点,即可证明直线必过坐标原点(2)设出直线的方程,与椭圆方程联立,消元,写韦达;根据条件可求出直线MN过定点,从而可得到过定点,进而可得到点在以为直径的圆上运动,从而可求出动点的轨迹方程【小问1详解】设,则,即因为,,所以因为,所以,所以.同理可证.因为,,所以四边形为平行四边形,因为为的中点,所以直线必过坐标原点【小问2详解】当直线的斜率存在时,设直线的方程为,,联立,整理得,则,,.因为,所以,因为,解得或.当时,直线的方程为过点A,不满足题意,所以舍去;所以直线的方程为,所以直线过定点.当直线的斜率不存在时,因为,所以直线的方程为,经验证,符合题意.故直线过定点.因为为的中点,为的中点,所以过定点.因为垂直平分公共弦,所以点在以为直径的圆上运动,该圆的半径,圆心坐标为,故动点的轨迹方程为.18、(1)不能,理由见解析;(2)①,②,【解析】(1)运用公式求出,比较得出结论.(2)①先用分层抽样得到“体能优秀”与“体能一般”的人数,再利用公式计算至少有2人是“体能优秀”的概率.②根据已知条件知此分布列为二项分布,故利用数学期望和方差的公式即可求出答案【小问1详解】由表格的数据可得,,故不能在犯错误的概率不超过0.10的前提下认为“体能优秀”还是“体能一般”与数学成绩有关.【小问2详解】①在数学优秀的人群中,“体能优秀”与“体能一般”的比例为“体能一般”的人数为,“体能优秀”的人数为故再从这10人中随机选出4人,其中至少有2人是“体能优秀”的概率为.②由题意可得,随机抽取一人“体能优秀”的概率为,且故,19、(1)(2)【解析】(Ⅰ)将数列中的项用和表示,根据等比数列的性质可得到关于的一元二次方程可求得的值,即可得到数列的通项公式;(Ⅱ)根据(Ⅰ)可求得的通项公式,用分组求和法可得其前项和.试题解析:(Ⅰ)设等差数列的公差为,因,且,,成等比数列,即,,成等比数列,所以有,即,解得或(舍去),所以,,数列的通项公式为.(Ⅱ)由(Ⅰ)知,所以.点睛:本题主要考查了等差数列,等比数列的概念,以及数列的求和,属于高考中常考知识点,难度不大;常见的数列求和的方法有公式法即等差等比数列求和公式,分组求和类似于,其中和分别为特殊数列,裂项相消法类似于,错位相减法类似于,其中为等差数列,为等比数列等.20、(1)(2)【解析】(1)利用等比数列的定义以及等差数列的性质,列出方程即可得到答案;(2)先求出的通项,再利用的单调性即可得到的最小值,从而求得的取值范围【小问1详解】依题意,,,所以,设等差数列的公差为,则,解得,所以【小问2详解】,则数列是递增数列,,所以,若,则.21、(1);(2)【解析】(1)将已知条件整理变形为等比数列的首项和公比来表示,解方程组得到基本量,可得到通项公式(2)化简通项得,根据特点求和时采用错位相减法求解试题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 员工素质提升总结
- 收养协议书汇编
- 《天然气液化流程》课件
- 2024年度物业顾问合同:甲方聘请乙方作为物业顾问的协议3篇
- 《D报告培训资料》课件
- 《大学化学绪论》课件
- 护理发明小成果汇报
- 基层管理人员安全管理培训
- 2024年度网络安全防护与技术更新服务合同3篇
- 你比讲我来猜活动
- 新版RoHS环保知识培训教学内容
- 2025届炎德英才大联考物理高二上期末学业水平测试试题含解析
- 2024年执业药师资格继续教育定期考试题库附含答案
- 蚯蚓与土壤肥力提升2024年课件
- 店铺管理运营协议合同范本
- 天津市和平区2024-2025学年高一上学期11月期中英语试题(含答案含听力原文无音频)
- 2024年全国烟花爆竹储存作业安全考试题库(含答案)
- 2024年高中化学教师资格考试面试试题与参考答案
- DB11-T 2315-2024消防安全标识及管理规范
- 全科医生转岗培训结业考核模拟考试试题
- 吃动平衡健康体重 课件 2024-2025学年人教版(2024)初中体育与健康七年级全一册
评论
0/150
提交评论