版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省枣庄市现代实验学校数学高二上期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若复数z满足(其中为虚数单位),则()A. B.C. D.2.函数图象的一个对称中心为()A. B.C. D.3.世界上最早在理论上计算出“十二平均律”的是我国明代杰出的律学家朱载堉,他当时称这种律制为“新法密率”十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都相等,且最后一个单音是第一个单音频率的2倍.已知第十个单音的频率,则与第四个单音的频率最接近的是()A.880 B.622C.311 D.2204.已知等比数列中,,,则首项()A. B.C. D.05.椭圆的焦点坐标为()A.和 B.和C.和 D.和6.已知函数,则()A.函数的极大值为,无极小值 B.函数的极小值为,无极大值C.函数的极大值为0,无极小值 D.函数的极小值为0,无极大值7.已知直线过点,当直线与圆有两个不同的交点时,其斜率的取值范围是()A. B.C. D.8.已知等比数列的前项和为,首项为,公比为,则()A. B.C. D.9.若向量,,则()A. B.C. D.10.若双曲线的离心率为,则其渐近线方程为A.y=±2x B.y=C. D.11.已知函数,则满足不等式的的取值范围是()A. B.C. D.12.双曲线的焦点坐标是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.记为等差数列的前n项和.若,则__________14.直线的倾斜角的取值范围是______.15.生活中有这样的经验:三脚架在不平的地面上也可以稳固地支撑一部照相机.这个经验用我们所学的数学公理可以表述为___________.16.若双曲线的离心率为2,则此双曲线的渐近线方程___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面是正方形,侧面底面,为侧棱上一点(1)求证:;(2)若为中点,平面与侧棱于点,且,求四棱锥的体积18.(12分)在平面直角坐标系中,动点到点的距离和它到直线的距离之比为.动点的轨迹为曲线.(1)求曲线的方程,并说明曲线是什么图形;(2)已知曲线与轴的交点分别为,点是曲线上异于的一点,直线的斜率为,直线的斜率为,求证:为定值.19.(12分)已知,是椭圆:的左、右焦点,离心率为,点A在椭圆C上,且的周长为.(1)求椭圆C的方程;(2)若B为椭圆C上顶点,过的直线与椭圆C交于两个不同点P、Q,直线BP与x轴交于点M,直线BQ与x轴交于点N,判断是否为定值.若是,求出定值,若不是,请说明理由.20.(12分)p:方程有两个不等的负实数根;q:方程无实数根,若为真命题,为假命题,求实数m的取值范围、21.(12分)如图,在正方体中,E为的中点(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值22.(10分)已知函数在区间上有最大值和最小值(1)求实数、的值;(2)设,若不等式,在上恒成立,求实数的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用复数的除法化简复数,利用复数的模长公式可求得结果.【详解】,因此,.故选:B2、D【解析】要求函数图象的一个对称中心的坐标,关键是求函数时的的值;令,根据余弦函数图象性质可得,此时可求出,然后对进行取值,进而结合选项即可得到答案.【详解】解:令,则解得,即,图象的对称中心为,令,即可得到图象的一个对称中心为故选:D【点睛】本题考查三角函数的对称中心,正弦函数的对称中心为,余弦函数的对称中心为.3、C【解析】依题意,每一个单音的频率构成一个等比数列,由,算出公比,结合,即可求出.【详解】设第一个单音的频率为,则最后一个单音的频率为,由题意知,且每一个单音的频率构成一个等比数列,设公比为,则,解得:又,则与第四个单音的频率最接近的是311,故选:C【点睛】关键点点睛:本题考查等比数列通项公式的运算,解题的关键是分析题意将其转化为等比数列的知识,考查学生的计算能力,属于基础题.4、B【解析】设等比数列的公比为q,根据等比数列的通项公式,列出方程组,即可求得,进而可求得答案.【详解】设等比数列公比为q,则,解得,所以.故选:B5、D【解析】本题是焦点在x轴的椭圆,求出c,即可求得焦点坐标.【详解】,可得焦点坐标为和.故选:D6、A【解析】利用导数来求得的极值.【详解】的定义域为,,在递增;在递减,所以的极大值为,没有极小值.故选:A7、A【解析】设直线方程,利用圆与直线的关系,确定圆心到直线的距离小于半径,即可求得斜率范围.【详解】如下图:设直线l的方程为即圆心为,半径是1又直线与圆有两个不同的交点故选:A8、D【解析】根据求解即可.【详解】因为等比数列,,所以.故选:D9、D【解析】由向量数量积的坐标运算求得数量积,模,结合向量的共线定义判断【详解】由已知,,,与不垂直,若,则,,但是,,因此与不共线故选:D10、B【解析】双曲线的离心率为,渐进性方程为,计算得,故渐进性方程为.【考点定位】本小题考查了离心率和渐近线等双曲线的性质.11、A【解析】利用导数判断函数的单调性,根据单调性即可解不等式【详解】由则函数在上单调递增又,所以,解得故选:A12、B【解析】根据双曲线的方程,求得,结合双曲线的几何性质,即可求解.【详解】由题意,双曲线,可得,所以,且双曲线的焦点再轴上,所以双曲线的焦点坐标为.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】因为是等差数列,根据已知条件,求出公差,根据等差数列前项和,即可求得答案.【详解】是等差数列,且,设等差数列的公差根据等差数列通项公式:可得即:整理可得:解得:根据等差数列前项和公式:可得:.故答案:.【点睛】本题主要考查了求等差数列的前项和,解题关键是掌握等差数列的前项和公式,考查了分析能力和计算能力,属于基础题.14、【解析】先求出直线的斜率取值范围,再根据斜率与倾斜角的关系,即可求出【详解】可化为:,所以,由于,结合函数在上的图象,可知故答案为:【点睛】本题主要考查斜率与倾斜角的关系的应用,以及直线的一般式化斜截式,属于基础题15、不在同一直线上的三点确定一个平面【解析】根据题意结合平面公理2即可得出答案.【详解】解:根据题意可知,三脚架与地面接触的三个点不在同一直线上,则为数学中的平面公理2:不在同一直线上的三点确定一个平面.故答案为:不在同一直线上的三点确定一个平面.16、【解析】根据离心率得出,结合得出关系,即可求出双曲线的渐近线方程.【详解】解:由题可知,离心率,即,又,即,则,故此双曲线的渐近线方程为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)利用面面垂直的性质定理可得出平面,再利用线面垂直的性质可得出;(2)分析可知为的中点,平面,计算出梯形的面积,利用锥体的体积公式可求得四棱锥的体积【小问1详解】证明:因为四边形为正方形,则,因为侧面底面,平面平面,平面,所以平面,又平面,所以.【小问2详解】解:因为,平面,平面,所以,平面,因为平面,平面平面,所以,所以,,则,所以,四边形是直角梯形,又是中点,所以,,所以,由平面,平面,所以,从而,正三角形中,是中点,,即,,所以平面,因为,所以.18、(1),曲线是以为焦点的椭圆;(2)证明见解析.【解析】(1)由题可得,即求;(2)利用斜率公式及椭圆方程计算即得.【小问1详解】设点坐标为,根据题意,得,左右同时平方,得,整理得,,即,所以曲线的方程是,曲线是以为焦点的椭圆.【小问2详解】由题意得,设的坐标是,因为点在曲线上,所以,因为,所以,所以为定值.19、(1)(2)【解析】(1)利用椭圆的定义可得,而离心率,解方程组,即可得解;(2)设直线的方程为,将其与椭圆的方程联立,由,,三点的坐标写出直线,的方程,进而知点,的坐标,再结合韦达定理,进行化简,即可得解【小问1详解】解:因为的周长为,所以,即,又离心率,所以,,所以,故椭圆的方程为【小问2详解】解:由题意知,直线的斜率一定不可能为0,设其方程为,,,,,联立,得,所以,,因为点为,所以直线的方程为,所以点,,直线的方程为,所以点,,所以,即为定值20、【解析】利用复合命题的真假推出两个命题为一真一假,求出m的范围即可.【详解】:方程有两个不等的负实数根,解得,:方程无实数根,解得,所以:,:或.因为为真命题,为假命题,所以真假,或假真.(1)当真假时,即真为真,所以,解得;(2)当假真时,即真为真,所以,解得.综上,取值范围为21、(Ⅰ)证明见解析;(Ⅱ).【解析】(Ⅰ)证明出四边形为平行四边形,可得出,然后利用线面平行的判定定理可证得结论;也可利用空间向量计算证明;(Ⅱ)可以将平面扩展,将线面角转化,利用几何方法作出线面角,然后计算;也可以建立空间直角坐标系,利用空间向量计算求解.【详解】(Ⅰ)[方法一]:几何法如下图所示:在正方体中,且,且,且,所以,四边形为平行四边形,则,平面,平面,平面;[方法二]:空间向量坐标法以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,设正方体的棱长为,则、、、,,,设平面的法向量为,由,得,令,则,,则.又∵向量,,又平面,平面;(Ⅱ)[方法一]:几何法延长到,使得,连接,交于,又∵,∴四边形为平行四边形,∴,又∵,∴,所以平面即平面,连接,作,垂足为,连接,∵平面,平面,∴,又∵,∴直线平面,又∵直线平面,∴平面平面,∴在平面中的射影在直线上,∴直线为直线在平面中的射影,∠为直线与平面所成的角,根据直线直线,可知∠为直线与平面所成的角.设正方体的棱长为2,则,,∴,∴,∴,即直线与平面所成角的正弦值为.[方法二]:向量法接续(I)的向量方法,求得平面平面的法向量,又∵,∴,∴直线与平面所成角的正弦值为.[方法三]:几何法+体积法如图,设的中点为F,延长,易证三线交于一点P因为,所以直线与平面所成的角,即直线与平面所成的角设正方体的棱长为2,在中,易得,可得由,得,整理得所以所以直线与平面所成角的正弦值为[方法四]:纯体积法设正方体的棱长为2,点到平面的距离为h,在中,,,所以,易得由,得,解得,设直线与平面所成的角为,所以【整体点评】(Ⅰ)的方法一使用线面平行的判定定理证明,方法二使用空间向量坐标运算进行证明;(II)第一种方法中使用纯几何方法,适合于没有学习空间向量之前的方法,有利用培养学生的集合论证和空间想象能力,第二种方法使用空间向量方法,两小题前后连贯,利用计算论证和求解,定为最优解法;方法三在几何法的基础上综合使用体积方法,计算较为简洁;方法四不作任何辅助线,仅利用正余弦定理和体积公式进行计算,省却
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大修个人合同模板
- 2024年企业用锅炉设备安装协议范本一
- 2024年管桩工程安装承包协议样本一
- 园区管廊出租合同模板
- 私人楼房维修合同模板
- 购油合同模板编号
- 采购防护小贴士合同模板
- 电表前线安装合同模板
- 2024年企业协议履约管理规范细则版
- 房租合同模板英文
- 第4课《公民的基本权利和义务》(课件)-部编版道德与法治六年级上册
- 20世纪时尚流行文化智慧树知到期末考试答案章节答案2024年浙江理工大学
- 国开(甘肃)2024年春《地域文化(专)》形考任务1-4终考答案
- 《路由与交换技术》课程教学大纲
- 中大型集团公司 信息化建设 信息中心工作职责 明细
- 执法办案区域工作台账[表格借鉴]
- 商务礼仪作业
- 【精】标本溢洒处理流程9
- (最新整理)背景调查管理办法
- 红细胞无效输注、临床输血若干问题-兰炯采教授课件.ppt
- 英语B级语法总结
评论
0/150
提交评论