2024届江苏省沭阳县高二上数学期末调研试题含解析_第1页
2024届江苏省沭阳县高二上数学期末调研试题含解析_第2页
2024届江苏省沭阳县高二上数学期末调研试题含解析_第3页
2024届江苏省沭阳县高二上数学期末调研试题含解析_第4页
2024届江苏省沭阳县高二上数学期末调研试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省沭阳县高二上数学期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列说法错误的是()A.命题“,”的否定是“,”B.若“”是“或”的充分不必要条件,则实数m的最大值为2021C.“”是“函数在内有零点”的必要不充分条件D.已知,且,则的最小值为92.命题“,都有”的否定为()A.,使得 B.,使得C.,使得 D.,使得3.函数,则曲线在点处的切线方程为()A. B.C. D.4.如果在一实验中,测得的四组数值分别是,则y与x之间的回归直线方程是()A. B.C. D.5.直线被圆截得的弦长为()A.1 B.C.2 D.36.已知数列是各项均为正数的等比数列,若,则公比()A. B.2C.2或 D.47.设实数,满足,则的最小值为()A.5 B.6C.7 D.88.下列结论中正确的有()A.若,则 B.若,则C.若,则 D.若,则9.已知中,内角所对的边分别,若,,,则()A. B.C. D.10.已知公比不为1的等比数列,其前n项和为,,则()A.2 B.4C.5 D.2511.若直线过点(1,2),(4,2+),则此直线的倾斜角是()A.30° B.45°C.60° D.90°12.已知点A、是抛物线:上的两点,且线段过抛物线的焦点,若的中点到轴的距离为3,则()A.3 B.4C.6 D.8二、填空题:本题共4小题,每小题5分,共20分。13.已知正四面体ABCD中,E,F分别是线段BC,AD的中点,点G是线段CD上靠近D的四等分点,则直线EF与AG所成角的余弦值为______14.已知双曲线,左右焦点分别为,若过右焦点的直线与以线段为直径的圆相切,且与双曲线在第二象限交于点,且轴,则双曲线的离心率是_________.15.下列命题:①若,则;②“在中,若,则”逆命题是真命题;③命题“,”的否定是“,”;④“若,则”的否命题为“若,则”.则其中正确的是______.16.如图,在等腰直角△ABC中,,点P是边AB上异于A、B的一点,光线从点P出发,经BC、CA反射后又回到原点P.若光线QR经过△ABC的内心,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,菱形的边长为4,,矩形的面积为8,且平面平面(1)证明:;(2)求C到平面的距离.18.(12分)已知三棱柱的侧棱垂直于底面,,,,,分别是,的中点.(Ⅰ)证明:平面;(Ⅱ)求二面角的余弦值.19.(12分)已知椭圆C:的左、右焦点分别为F1,F2,离心率为,椭圆C上点M满足(1)求椭圆C的标准方程:(2)若过坐标原点的直线l交椭圆C于P,Q两点,求线段PQ长为时直线l的方程20.(12分)如图,在平行四边形ABCD中,AB=1,BC=2,∠ABC=60°,四边形ACEF为正方形,且平面ABCD⊥平面ACEF(1)证明:AB⊥CF;(2)求点C到平面BEF距离;(3)求平面BEF与平面ADF夹角的正弦值21.(12分)已知数列{an}的前n项和为Sn,an>0,a1<2,6Sn=(an+1)(an+2).(1)求证:数列{an}是等差数列;(2)令,数列{bn}的前n项和为Tn,求证:.22.(10分)在①,②,③这三个条件中任选一个,补充在下面问题的题设条件中.问题:等差数列的公差为,满足,________?(1)求数列的通项公式;(2)求数列的前项和得到最小值时的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】对于A:用存在量词否定全称命题,直接判断;对于B:根据充分不必要条件直接判断;对于C:判断出“”是“函数在内有零点”的充分不必要条件,即可判断;对于D:利用基本不等式求最值.【详解】对于A:用存在量词否定全称命题,所以命题“,”的否定是“,”.故A正确;对于B:若“”是“或”的充分不必要条件,所以,即实数m的最大值为2021.故B正确;对于C:“函数在内有零点”,则,解得:或,所以“”是“函数在内有零点”的充分不必要条件.故C错误;对于D:已知,且,所以(当且仅当,即时取等号)故D正确.故选:C2、A【解析】根据命题的否定的定义判断【详解】全称命题的否定是特称命题,命题“,都有”的否定为:,使得故选:A3、D【解析】对函数求导,利用导数的几何意义求出切线斜率即可计算作答.【详解】依题意,,即有,而,则过点,斜率为1的直线方程为:,所以曲线在点处切线方程为.故选:D4、B【解析】根据已知数据求样本中心点,由样本中心点在回归直线上,将其代入各选项的回归方程验证即可.【详解】由题设,,因为回归直线方程过样本点中心,A:,排除;B:,满足;C:,排除;D:,排除.故选:B5、C【解析】利用直线和圆相交所得的弦长公式直接计算即可.【详解】由题意可得圆的圆心为,半径,则圆心到直线的距离,所以由直线和圆相交所得的弦长公式可得弦长为:.故选:C.6、B【解析】由两式相除即可求公比.【详解】设等比数列的公比为q,∵其各项均为正数,故q>0,∵,∴,又∵,∴=4,则q=2.故选:B.7、A【解析】作出不等式组的可行域,利用目标函数的几何意义,利用数形结合的思想求解即可.【详解】画出约束条件的平面区域,如下图所示:目标函数可以化为,函数可以看成由函数平移得到,当直线经过点时,直线的截距最小,则,故选:8、D【解析】根据基本初等函数的导数和运算法则分别计算函数的导数,即可判断选项.【详解】A.若,则,故A错误;B.若,则,故B错误;C.若,则,故C错误;D.若,则,故D正确.故选:D9、B【解析】利用正弦定理可直接求得结果.【详解】在中,由正弦定理得:.故选:B.10、B【解析】设等比数列的公比为,根据求得,从而可得出答案.【详解】解:设等比数列的公比为,则,所以,则.故选:B.11、A【解析】求出直线的斜率,由斜率得倾斜角【详解】由题意直线斜率为,所以倾斜角为故选:A12、D【解析】直接根据抛物线焦点弦长公式以及中点坐标公式求结果【详解】设,,则的中点到轴的距离为,则故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】建立空间直角坐标系,令正四面体的棱长为,即可求出点的坐标,从而求出异面直线所成角的余弦值;【详解】解:如图建立空间直角坐标系,令正四面体的棱长为,则,所以,所以,所以,,,,,设,因为,所以,所以,所以,,设直线与所成角为,则故答案为:14、【解析】根据题意可得,进而可得,再根据,可得再根据双曲线的定义,即可得到,进而求出结果.【详解】如图所示:设切点为,所以,又轴所以,所以,由,,所以又,所以故答案为:.15、②③④【解析】根据不等式的性质,正弦定理与四种命题的概念,命题的否定,判断各命题【详解】①,满足,但,①错;②在中,由正弦定理,因此其逆命题也是真命题,②正确;③存在命题的否定是全称命题,命题“,”的否定是“,”,③正确;④由否命题的概念,“若,则”的否命题为“若,则”,④正确故答案为:②③④16、【解析】以为坐标原点建立空间直角坐标系,设出点的坐标,求得△的内心坐标,根据△内心以及关于的对称点三点共线,即可求得点的坐标,则问题得解.【详解】根据题意,以为坐标原点,建立平面直角坐标系,设点关于直线的对称点为,关于轴的对称点为,如下所示:则,不妨设,则直线的方程为,设点坐标为,则,且,整理得,解得,即点,又;设△的内切圆圆心为,则由等面积法可得,解得;故其内心坐标为,由及△的内心三点共线,即,整理得,解得(舍)或,故.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析.(2)【解析】(1)利用线面垂直的性质证明出;(2)利用等体积转换法,先求出O到平面AEF的距离,再求C到平面的距离.【小问1详解】在矩形中,.因为平面平面,平面平面,所以平面,所以.【小问2详解】设AC与BD的交点为O,则C到平面AEF的距离为O到平面AEF的距离的2倍.因为菱形ABCD的边长为4且,所以.因为矩形BDFE的面积为8,所以BE=2.,,则三棱锥的体积.在△AEF中,,所以.记O到平面AEF的距离为d.由得:,解得:,所以C到平面AEF的距离为.18、(1)见解析;(2).【解析】分析:依题意可知两两垂直,以点为原点建立空间直角坐标系,(1)利用直线的方向向量和平面的法向量垂直,即可证得线面平面;(2)求出两个平面的法向量,利用两个向量的夹角公式,即可求解二面角的余弦值.详解:依条件可知、、两两垂直,如图,以点为原点建立空间直角坐标系.根据条件容易求出如下各点坐标:,,,,,,,.(Ⅰ)证明:∵,,是平面的一个法向量,且,所以.又∵平面,∴平面;(Ⅱ)设是平面的法向量,因为,,由,得.解得平面的一个法向量,由已知,平面的一个法向量为,,∴二面角的余弦值是.点睛:本题考查了立体几何中的面面垂直的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成.同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.19、(1)(2)【解析】(1)依题意可得,即可求出、,即可求出椭圆方程;(2)首先求出直线斜率不存在时弦显然可得直线的斜率存在,设直线方程为、、,联立直线与椭圆方程,消元列出韦达定理,再根据弦长公式得到方程,求出,即可得解;【小问1详解】解:依题意,解得,所以椭圆方程为;【小问2详解】解:当直线的斜率不存在时,直线的方程为,此时,不符合题意;所以直线的斜率存在,设直线方程为,则,消元整理得,设,,则,,所以,即,解得,所以直线的方程为;20、(1)证明见解析;(2);(3).【解析】(1)利用余弦定理计算AC,再证明即可推理作答.(2)以点A为原点,射线AB,AC,AF分别为x,y,z轴非负半轴建立空间直角坐标系,借助空间向量计算点C到平面BEF的距离.(3)利用(2)中坐标系,用向量数量积计算两平面夹角余弦值,进而求解作答.小问1详解】在中,AB=1,BC=2,∠ABC=60°,由余弦定理得,,即,有,则,即,因平面ABCD⊥平面ACEF,平面平面,平面,于是得平面,又平面,所以.【小问2详解】因四边形ACEF为正方形,即,由(1)知两两垂直,以点A为原点,射线AB,AC,AF分别为x,y,z轴非负半轴建立空间直角坐标系,如图,,,设平面的一个法向量,则,令,得,而,于是得点C到平面BEF的距离,所以点C到平面BEF的距离为.【小问3详解】由(2)知,,设平面的一个法向量,则,令,得,,设平面BEF与平面ADF夹角为,,则有,,所以平面BEF与平面ADF夹角的正弦值为.【点睛】易错点睛:空间向量求二面角时,一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算,要认真细心,准确计算21、(1)证明见解析(2)证明见解析【解析】(1)根据数列通项与前项和的关系,构造新等式,作差整理得到,进而求解结论;(2)求出数列{an}的通项公式,再代入裂项求和即可.【小问1详解】证明:因为,所以当时,,两式相减,得到,整理得,又因为an>0,所以,所以数列{an}是等差数列,公差为3;【小问2详解】证明:当n=1时,6S1=(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论