![2024届河南省唐河县友兰实验高中高二数学第一学期期末检测试题含解析_第1页](http://file4.renrendoc.com/view/0e48fa5a75d1579eda4145b60b50abfb/0e48fa5a75d1579eda4145b60b50abfb1.gif)
![2024届河南省唐河县友兰实验高中高二数学第一学期期末检测试题含解析_第2页](http://file4.renrendoc.com/view/0e48fa5a75d1579eda4145b60b50abfb/0e48fa5a75d1579eda4145b60b50abfb2.gif)
![2024届河南省唐河县友兰实验高中高二数学第一学期期末检测试题含解析_第3页](http://file4.renrendoc.com/view/0e48fa5a75d1579eda4145b60b50abfb/0e48fa5a75d1579eda4145b60b50abfb3.gif)
![2024届河南省唐河县友兰实验高中高二数学第一学期期末检测试题含解析_第4页](http://file4.renrendoc.com/view/0e48fa5a75d1579eda4145b60b50abfb/0e48fa5a75d1579eda4145b60b50abfb4.gif)
![2024届河南省唐河县友兰实验高中高二数学第一学期期末检测试题含解析_第5页](http://file4.renrendoc.com/view/0e48fa5a75d1579eda4145b60b50abfb/0e48fa5a75d1579eda4145b60b50abfb5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省唐河县友兰实验高中高二数学第一学期期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛物线的焦点到双曲线的渐近线的距离是()A. B.C.1 D.2.已知函数在区间上是增函数,则实数的取值范围是()A. B.C. D.3.已知椭圆C:的一个焦点为(0,-2),则k的值为()A.5 B.3C.9 D.254.若数列满足,,则数列的通项公式为()A. B.C. D.5.已知双曲线的左、右焦点分别为,,过作圆的切线分别交双曲线的左、右两支于,,且,则双曲线的渐近线方程为()A. B.C. D.6.在等差数列中,已知,则数列的前6项之和为()A.12 B.32C.36 D.727.若命题“或”与命题“非”都是真命题,则A.命题与命题都是真命题B.命题与命题都是假命题C.命题是真命题,命题是假命题D.命题是假命题,命题是真命题8.是数列,,,-17,中的第几项()A第项 B.第项C.第项 D.第项9.已知数列是等比数列,,是函数的两个不同零点,则等于()A. B.C.14 D.1610.在空间直角坐标系中,若,,则点B的坐标为()A.(3,1,﹣2) B.(-3,1,2)C.(-3,1,-2) D.(3,-1,2)11.下列关于函数及其图象的说法正确的是()A.B.最小正周期为C.函数图象的对称中心为点D.函数图象的对称轴方程为12.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.8 B.16C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知直线与圆交于两点,则面积的最大值为__________.14.已知函数则的值为.____15.已知双曲线:,,是其左右焦点.圆:,点为双曲线右支上的动点,点为圆上的动点,则的最小值是________.16.美好人生路车站早上有6:40,6:50两班开往A校的公交车,若李华同学在早上6:35至6:50之间随机到达该车站,乘开往A校的公交车,公交车准时发车,则他等车时间不超过5分钟的概率为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)等比数列的各项均为正数,且,.(1)求数列的通项公式;(2)设,求数列前项和.18.(12分)在如图所示的多面体中,且,,,且,,且,平面,(1)求证:;(2)求平面与平面夹角的余弦值19.(12分)已知数列的前项和为,且满足,,成等比数列,.(1)求数列的通项公式;(2)令,求数列的前项和.20.(12分)浙江省新高考采用“3+3”模式,其中语文、数学、外语三科为必考科目,另外考生根据自己实际需要在政治、历史、地理、物理、化学、生物、技术7门科目中自选3门参加考试.下面是某校高一200名学生在一次检测中的物理、化学、生物三科总分成绩,以组距20分成7组:[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],画出频率分布直方图如下图所示(1)求频率分布直方图中的值;(2)由频率分布直方图,求物理、化学、生物三科总分成绩的第60百分位数;(3)若小明决定从“物理、化学、生物、政治、技术”五门学科中选择三门作为自己的选考科目,求小明选中“技术”的概率21.(12分)著名的“康托尔三分集”是由德国数学家康托尔构造的,是人类理性思维的产物,其操作过程如下:将闭区间均分为三段,去掉中间的区间段记为第一次操作;再将剩下的两个闭区间,分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷.每次操作后剩下的闭区间构成的集合即是“康托尔三分集”.例如第一次操作后的“康托尔三分集”为.(1)求第二次操作后的“康托尔三分集”;(2)定义的区间长度为,记第n次操作后剩余的各区间长度和为,求;(3)记n次操作后“康托尔三分集”的区间长度总和为,若使不大于原来的,求n的最小值.(参考数据:,)22.(10分)已知椭圆的右焦点是椭圆上的一动点,且的最小值是1,当垂直长轴时,.(1)求椭圆的标准方程;(2)设直线与椭圆相切,且交圆于两点,求面积的最大值,并求此时直线方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先确定抛物线的焦点坐标,和双曲线的渐近线方程,再由点到直线的距离公式即可求出结果.【详解】因为抛物线的焦点坐标为,双曲线的渐近线方程为,由点到直线的距离公式可得.故选:B2、D【解析】由在上恒成立,再转化为求函数的取值范围可得【详解】由已知,在上是增函数,则在上恒成立,即,,当时,,所以故选:D3、A【解析】由题意可得焦点在轴上,由,可得k的值.【详解】∵椭圆的一个焦点是,∴,∴,故选:A4、B【解析】根据等差数列的定义和通项公式直接得出结果.【详解】因为,所以数列是等差数列,公差为1,所以.故选:B5、D【解析】直线的斜率为,计算,,利用余弦定理得到,化简知,得到答案【详解】由题意知直线的斜率为,,又,由双曲线定义知,,.由余弦定理:,,即,即,解得.故双曲线渐近线的方程为.故答案选D【点睛】本题考查了双曲线的渐近线,与圆的关系,意在考查学生的综合应用能力和计算能力.6、C【解析】利用等差数列的求和公式结合角标和定理即可求解.【详解】解:等差数列中,所以等差数列的前6项之和为:故选:C.7、D【解析】因为非p为真命题,所以p为假命题,又p或q为真命题,所以q为真命题,选D.8、C【解析】利用等差数列的通项公式即可求解【详解】设数列,,,,是首项为,公差d=-4的等差数列{},,令,得故选:C9、C【解析】根据等比数列的性质求得正确答案.【详解】是函数的两个不同零点,所以,由于数列是等比数列,所以.故选:C10、C【解析】利用点的坐标表示向量坐标,即可求解.【详解】设,,,所以,,,解得:,,,即.故选:C11、D【解析】化简,利用正弦型函数的性质,依次判断,即可【详解】∵∴,A选项错误;的最小正周期为,B选项错误;令,则,故函数图象的对称中心为点,C选项错误;令,则,所以函数图象的对称轴方程为,D选项正确故选:D12、C【解析】画出直观图,利用椎体体积公式进行求解.【详解】画出直观图,为四棱锥A-BCDE,其中BC=4,BE=2,AE=2,且BE,AE,DE两两垂直,故体积为.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】先求出的范围,再利用面积公式可求面积的最大值.【详解】圆即为,直线为过原点的直线,如图,连接,故,解得,此时,故的面积为,当且仅当时等号成立,此时即,故答案为:.14、-1【解析】详解】试题分析:由题意,得,所以,解得,所以考点:导数的运算15、##【解析】利用双曲线定义,将的最小值问题转化为的最小值问题,然后结合图形可解.【详解】由题设知,,,,圆的半径由点为双曲线右支上的动点知∴∴.故答案为:16、【解析】根据题意,李华等车不超过5分钟,则他必须在6:35-6:40或者6:45-6:50到达,进而根据几何概型求概率的方法求得答案.【详解】由题意,李华等车不超过5分钟,则他必须在6:35-6:40或者6:45-6:50到达,则所求概率.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据题意求出首项和公比即可得出通项公式;(2)可得是等差数列,利用等差数列前n项和公式即可求出.【详解】解:(1)设等比数列的公比为,则,由题意得,解得,因此,;(2),则,所以,数列是等差数列,首项,记数列前项和为,则.18、(1)证明见解析(2)【解析】(1)根据线面垂直的性质可得,,如图所示,以为坐标原点建立空间直角坐标系,证明即可得证;(2)求出平面与平面的法向量,再利用向量法即可得解.【小问1详解】证明:因为平面,平面,平面,所以,且,因为,如图所示,以为坐标原点建立空间直角坐标系,则,,,,,,,所以,,,所以;【小问2详解】,设平面的法向量为,则,即,令,有,设平面的法向量为,则,即,令,有,设平面和平面的夹角为,,所以平面和平面的夹角的余弦值为19、(1);(2).【解析】(1)由可得数列是公差为2的等差数列,再由,,成等比数列,列方程可求出,从而可求得数列的通项公式;(2)由(1)可得,然后利用裂项相消求和法可求出【详解】解:(1)由,可得,即数列是公差为2的等差数列.所以,,.由题意得,解得,所以.(2)由(1)可得,所以数列的前项和.20、(1)=0.005(2)232(3)【解析】(1)由频率和为1列方程求解即可,(2)由于前3组的频率和小于0.6,前4组的频率和大于0.6,所以三科总分成绩的第60百分位数在第4组内,设第60百分位数为,则0.45+0.0125×(−220)=0.6,从而可求得结果,(3)利用列举法求解即可【小问1详解】由(0.002+0.0095+0.011+0.0125+0.0075++0.0025)×20=1,解得=0.005【小问2详解】因为(0.002+0.0095+0.011)×20=0.45<0.6,(0.002+0.0095+0.011+0.0125)×20=0.7>0.6,所以三科总分成绩的第60百分位数在[220,240)内,设第60百分位数为,则0.45+0.0125×(−220)=0.6,解得=232,即第60百分位数为232【小问3详解】将物理、化学、生物、政治、技术5门学科分别记作.则事件A表示小明选中“技术”,则,所以P(A)=21、(1)(2)(3)【解析】(1)根据“康托尔三分集”的定义,即可求得第二次操作后的“康托尔三分集”;(2)根据“康托尔三分集”的定义,分别求得前几次的剩余区间长度的和,求得其通项公式,即可求解;(3)由(2)可得第次操作剩余区间的长度和为,结合题意,得到,利用对数的运算公式,即可求解.【小问1详解】解:根据“康托尔三分集”的定义可得:第一次操作后的“康托尔三分集”为,第二次操作后的“康托尔三分集”为;【小问2详解】解:将定义的区间长度为,根据“康托尔三分集”的定义可得:每次去掉的区间长后组成的数为以为首项,为公比的等比数列,第1次操作去掉的区间长为,剩余区间的长度和为,第2次操作去掉两个区间长为的区间,剩余区间的长度和为,第3次操作去掉四个区间长为的区间,剩余区间的长度和为,第4次操作去掉个区间长为,剩余区间的长度和为,第次操作去掉个区间长为,剩余区间的长度和为,所以第次操作后剩余的各区间长度和为;【小问3详解】解:设定义区间,则区间长度为1,由(2)可得第次操作剩余区间的长度和为,要使得“康托三分集”的各区间的长度之和不大于,则满足,即,即,因为为整数,所以的最小值为.22、(1);(2),.【解析】(1)由的最小值为1,得到,再由,结合,求得的值,即可求得椭圆的方程.(2)设切线的方程为,联立方程组,根据直线与椭圆相切,求得,结合点到直线的距离公式和圆的弦长公式,求得的面积的表示,结合函数的单调性,即可求解.【详解】(1)由题意,点椭圆上的一动点,且的最小值是1,得,因为当垂直长轴时,可得,所以,即,又由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 12富起来到强起来 第一课时(说课稿)-2023-2024学年道德与法治五年级下册统编版
- 13《猫》说课稿-2023-2024学年四年级语文下册统编版
- Unit 4 Customs and Traditions:Review of Passives 语法衔接活动案例说课稿-2024-2025学年高中英语沪外版必修第一册
- 8 安全记心上《平安出行》(说课稿)-部编版道德与法治三年级上册
- 西藏小区变压器施工方案
- 27《巨人的花园》(说课稿)-2023-2024学年统编版语文四年级下册
- 《3 我的本领大-循环模块与执行器模块组合应用》说课稿-2023-2024学年清华版(2012)信息技术六年级下册001
- 9元日说课稿-2023-2024学年三年级下册语文统编版
- Unit 3 Seasons Lesson 2(说课稿)-2023-2024学年人教新起点版英语二年级下册
- 倒卖人口合同范例
- 邵阳市职工劳动能力鉴定表
- 稀土配合物和量子点共掺杂构筑发光软材料及其荧光性能研究
- 卫生部手术分级目录(2023年1月份修订)
- JJG 921-2021环境振动分析仪
- 中药炮制学-第五、六章
- 中国风军令状誓师大会PPT模板
- 小儿高热惊厥精品课件
- 2023机械工程师考试试题及答案
- 2022年电拖实验报告伍宏淳
- 丰田汽车战略规划与战略管理体系研究(2021)
- 即兴口语(姜燕)-课件-即兴口语第一章PPT-中国传媒大学
评论
0/150
提交评论