版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023届广东省云浮市郁南县连滩中学高三下学期入学考试数学试题试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若等差数列的前项和为,且,,则的值为().A.21 B.63 C.13 D.842.已知椭圆:的左、右焦点分别为,,过的直线与轴交于点,线段与交于点.若,则的方程为()A. B. C. D.3.已知实数满足则的最大值为()A.2 B. C.1 D.04.已知函数是上的偶函数,是的奇函数,且,则的值为()A. B. C. D.5.已知复数z满足(i为虚数单位),则在复平面内复数z对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.正项等比数列中的、是函数的极值点,则()A. B.1 C. D.27.已知复数(1+i)(a+i)为纯虚数(i为虚数单位),则实数a=()A.-1 B.1 C.0 D.28.已知复数z满足(i为虚数单位),则z的虚部为()A. B. C.1 D.9.函数在的图象大致为()A. B.C. D.10.已知三棱柱的所有棱长均相等,侧棱平面,过作平面与平行,设平面与平面的交线为,记直线与直线所成锐角分别为,则这三个角的大小关系为()A. B.C. D.11.执行如图所示的程序框图,若输出的结果为11,则图中的判断条件可以为()A. B. C. D.12.从某市的中学生中随机调查了部分男生,获得了他们的身高数据,整理得到如下频率分布直方图:根据频率分布直方图,可知这部分男生的身高的中位数的估计值为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知非零向量,满足,且,则与的夹角为____________.14.执行如图所示的程序框图,则输出的结果是______.15.展开式中的系数为_________.(用数字做答)16.已知,如果函数有三个零点,则实数的取值范围是____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数().(1)讨论的单调性;(2)若对,恒成立,求的取值范围.18.(12分)如图,在三棱锥中,,,,平面平面,、分别为、中点.(1)求证:;(2)求二面角的大小.19.(12分)一个工厂在某年里连续10个月每月产品的总成本(万元)与该月产量(万件)之间有如下一组数据:1.081.121.191.281.361.481.591.681.801.872.252.372.402.552.642.752.923.033.143.26(1)通过画散点图,发现可用线性回归模型拟合与的关系,请用相关系数加以说明;(2)①建立月总成本与月产量之间的回归方程;②通过建立的关于的回归方程,估计某月产量为1.98万件时,产品的总成本为多少万元?(均精确到0.001)附注:①参考数据:,,,,.②参考公式:相关系数,,.20.(12分)如图在直角中,为直角,,,分别为,的中点,将沿折起,使点到达点的位置,连接,,为的中点.(Ⅰ)证明:面;(Ⅱ)若,求二面角的余弦值.21.(12分)已知函数.(1)证明:当时,;(2)若函数只有一个零点,求正实数的值.22.(10分)在直角坐标系中,曲线的参数方程为(为参数),坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)若曲线、交于、两点,是曲线上的动点,求面积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
由已知结合等差数列的通项公式及求和公式可求,,然后结合等差数列的求和公式即可求解.【详解】解:因为,,所以,解可得,,,则.故选:B.【点睛】本题主要考查等差数列的通项公式及求和公式的简单应用,属于基础题.2、D【解析】
由题可得,所以,又,所以,得,故可得椭圆的方程.【详解】由题可得,所以,又,所以,得,,所以椭圆的方程为.故选:D【点睛】本题主要考查了椭圆的定义,椭圆标准方程的求解.3、B【解析】
作出可行域,平移目标直线即可求解.【详解】解:作出可行域:由得,由图形知,经过点时,其截距最大,此时最大得,当时,故选:B【点睛】考查线性规划,是基础题.4、B【解析】
根据函数的奇偶性及题设中关于与关系,转换成关于的关系式,通过变形求解出的周期,进而算出.【详解】为上的奇函数,,而函数是上的偶函数,,,故为周期函数,且周期为故选:B【点睛】本题主要考查了函数的奇偶性,函数的周期性的应用,属于基础题.5、D【解析】
根据复数运算,求得,再求其对应点即可判断.【详解】,故其对应点的坐标为.其位于第四象限.故选:D.【点睛】本题考查复数的运算,以及复数对应点的坐标,属综合基础题.6、B【解析】
根据可导函数在极值点处的导数值为,得出,再由等比数列的性质可得.【详解】解:依题意、是函数的极值点,也就是的两个根∴又是正项等比数列,所以∴.故选:B【点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.7、B【解析】
化简得到z=a-1+a+1【详解】z=1+ia+i=a-1+a+1i为纯虚数,故a-1=0故选:B.【点睛】本题考查了根据复数类型求参数,意在考查学生的计算能力.8、D【解析】
根据复数z满足,利用复数的除法求得,再根据复数的概念求解.【详解】因为复数z满足,所以,所以z的虚部为.故选:D.【点睛】本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.9、C【解析】
先根据函数奇偶性排除B,再根据函数极值排除A;结合特殊值即可排除D,即可得解.【详解】函数,则,所以为奇函数,排除B选项;当时,,所以排除A选项;当时,,排除D选项;综上可知,C为正确选项,故选:C.【点睛】本题考查根据函数解析式判断函数图像,注意奇偶性、单调性、极值与特殊值的使用,属于基础题.10、B【解析】
利用图形作出空间中两直线所成的角,然后利用余弦定理求解即可.【详解】如图,,设为的中点,为的中点,由图可知过且与平行的平面为平面,所以直线即为直线,由题易知,的补角,分别为,设三棱柱的棱长为2,在中,,;在中,,;在中,,,.故选:B【点睛】本题主要考查了空间中两直线所成角的计算,考查了学生的作图,用图能力,体现了学生直观想象的核心素养.11、B【解析】
根据程序框图知当时,循环终止,此时,即可得答案.【详解】,.运行第一次,,不成立,运行第二次,,不成立,运行第三次,,不成立,运行第四次,,不成立,运行第五次,,成立,输出i的值为11,结束.故选:B.【点睛】本题考查补充程序框图判断框的条件,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意模拟程序一步一步执行的求解策略.12、C【解析】
由题可得,解得,则,,所以这部分男生的身高的中位数的估计值为,故选C.二、填空题:本题共4小题,每小题5分,共20分。13、(或写成)【解析】
设与的夹角为,通过,可得,化简整理可求出,从而得到答案.【详解】设与的夹角为可得,故,将代入可得得到,于是与的夹角为.故答案为:.【点睛】本题主要考查向量的数量积运算,向量垂直转化为数量积为0是解决本题的关键,意在考查学生的转化能力,分析能力及计算能力.14、1【解析】
该程序的功能为利用循环结构计算并输出变量的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】模拟程序的运行,可得:,,不满足条件,执行循环体,,,不满足条件,执行循环体,,,不满足条件,执行循环体,,,不满足条件,执行循环体,,,此时满足条件,退出循环,输出的值为1.故答案为:1.【点睛】本题考查程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于基础题.15、210【解析】
转化,只有中含有,即得解.【详解】只有中含有,其中的系数为故答案为:210【点睛】本题考查了二项式系数的求解,考查了学生概念理解,转化划归,数学运算的能力,属于中档题.16、【解析】
首先把零点问题转化为方程问题,等价于有三个零点,两侧开方,可得,即有三个零点,再运用函数的单调性结合最值即可求出参数的取值范围.【详解】若函数有三个零点,即零点有,显然,则有,可得,即有三个零点,不妨令,对于,函数单调递增,,,所以函数在区间上只有一解,对于函数,,解得,,解得,,解得,所以函数在区间上单调递减,在区间上单调递增,,当时,,当时,,此时函数若有两个零点,则有,综上可知,若函数有三个零点,则实数的取值范围是.故答案为:【点睛】本题考查了函数零点的零点,恰当的开方,转化为函数有零点问题,注意恰有三个零点条件的应用,根据函数的最值求解参数的范围,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)①当时,在上单调递减,在上单调递增;②当时,在上单调递增;(2).【解析】
(1)求出函数的定义域和导函数,,对讨论,得导函数的正负,得原函数的单调性;(2)法一:由得,分别运用导函数得出函数(),的单调性,和其函数的最值,可得,可得的范围;法二:由得,化为令(),研究函数的单调性,可得的取值范围.【详解】(1)的定义域为,,①当时,由得,得,在上单调递减,在上单调递增;②当时,恒成立,在上单调递增;(2)法一:由得,令(),则,在上单调递减,,,即,令,则,在上单调递增,,在上单调递减,所以,即,(*)当时,,(*)式恒成立,即恒成立,满足题意法二:由得,,令(),则,在上单调递减,,,即,当时,由(Ⅰ)知在上单调递增,恒成立,满足题意当时,令,则,所以在上单调递减,又,当时,,,使得,当时,,即,又,,,不满足题意,综上所述,的取值范围是【点睛】本题考查对于含参数的函数的单调性的讨论,不等式恒成立时,求解参数的范围,属于难度题.18、(1)证明见解析;(2)60°.【解析】试题分析:(1)连结PD,由题意可得,则AB⊥平面PDE,;(2)法一:结合几何关系做出二面角的平面角,计算可得其正切值为,故二面角的大小为;法二:以D为原点建立空间直角坐标系,计算可得平面PBE的法向量.平面PAB的法向量为.据此计算可得二面角的大小为.试题解析:(1)连结PD,PA=PB,PDAB.,BCAB,DEAB.又,AB平面PDE,PE平面PDE,∴ABPE.(2)法一:平面PAB平面ABC,平面PAB平面ABC=AB,PDAB,PD平面ABC.则DEPD,又EDAB,PD平面AB=D,DE平面PAB,过D做DF垂直PB与F,连接EF,则EFPB,∠DFE为所求二面角的平面角,则:DE=,DF=,则,故二面角的大小为法二:平面PAB平面ABC,平面PAB平面ABC=AB,PDAB,PD平面ABC.如图,以D为原点建立空间直角坐标系,B(1,0,0),P(0,0,),E(0,,0),=(1,0,),=(0,,).设平面PBE的法向量,令,得.DE平面PAB,平面PAB的法向量为.设二面角的大小为,由图知,,所以即二面角的大小为.19、(1)见解析;(2)①②3.386(万元)【解析】
(1)利用代入数值,求出后即可得解;(2)①计算出、后,利用求出后即可得解;②把代入线性回归方程,计算即可得解.【详解】(1)由已知条件得,,∴,说明与正相关,且相关性很强.(2)①由已知求得,,所以,所求回归直线方程为.②当时,(万元),此时产品的总成本约为3.386万元.【点睛】本题考查了相关系数的应用以及线性回归方程的求解和应用,考查了计算能力,属于中档题.20、(Ⅰ)详见解析;(Ⅱ).【解析】
(Ⅰ)取中点,连结、,四边形是平行四边形,由,,得,从而,,求出,由此能证明.(Ⅱ)以为原点,、、所在直线分别为,,轴,建立空间直角坐标系,利用向量法能求出二面角的余弦值.【详解】证明:(Ⅰ)取中点,连结、,∵,,∴四边形是平行四边形,∵,,,∴,∴,∴,在中,,又∵为的中点,∴,又∵,∴.解:(Ⅱ)∵,,,∴,以为原点,、、所在直线分别为,,轴,建立空间直角坐标系,设,则,,,,∴,,,设面的法向量,则,取,得,同理,得平面的法向量,设二面角的平面角为,则,∴二面角的余弦值为.【点睛】本题考查面面垂直及线面垂直性质定理、线面垂直判定与性质定理以及利用空间向量求线面角与二面角,考查基本分析求解能力,属中档题.21、(1)证明见解析;(2).【解析】
(1)把转化成,令,由题意得,即证明恒成立,通过导数求证即可(2)直接求导可得,,令,得或,故根据0与的大小关系来进行分类讨论即可【详
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大厦车辆管理系统操作规程(2篇)
- 小学水电安全管理制度范文(2篇)
- 2025年基层卫生院医务工作计划样本(4篇)
- 应急事故救援预案学习模版(2篇)
- 现场实施工程师的岗位职责范文(2篇)
- 危险品货物运输行车管理制度(2篇)
- 教师教学工作常规管理制度模版(3篇)
- 2025年安保个人年度工作总结模版(2篇)
- 2025年除四害工作计划范例(3篇)
- 2025年员工培训总结模版(3篇)
- 2024午托承包合同-校园内学生午休服务协议3篇
- 马克思主义基本原理+2024秋+试题 答案 国开
- 苏州大学《线性代数与解析几何》2023-2024学年第一学期期末试卷
- 《地震灾害及其防治》课件
- 2024年版电商平台入驻商家服务与销售分成合同
- 蜜雪冰城合同范例
- 小红书种草营销师(初级)认证考试真题试题库(含答案)
- LPG液化气充装站介质分析操作规程 202412
- 养老院环境卫生保洁方案
- 2024年WPS计算机二级考试题库350题(含答案)
- 2024年5G网络覆盖工程分包合同
评论
0/150
提交评论