2023-2024学年陕西省铜川市数学高二上期末检测试题含解析_第1页
2023-2024学年陕西省铜川市数学高二上期末检测试题含解析_第2页
2023-2024学年陕西省铜川市数学高二上期末检测试题含解析_第3页
2023-2024学年陕西省铜川市数学高二上期末检测试题含解析_第4页
2023-2024学年陕西省铜川市数学高二上期末检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年陕西省铜川市数学高二上期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.定义运算:.已知,都是锐角,且,,则()A. B.C. D.2.已知直线和互相垂直,则实数的值为()A. B.C.或 D.3.设.若,则=()A. B.C. D.e4.已知抛物线的焦点为,为抛物线上一点,为坐标原点,且,则()A.4 B.2C. D.5.天文学家卡西尼在研究土星及其卫星的运行规律时发现:同一平面内到两个定点的距离之积为常数的点的轨迹是卡西尼卵形线.在平面直角坐标系中,设定点为,,,点O为坐标原点,动点满足(且为常数),化简得曲线E:.当,时,关于曲线E有下列四个命题:①曲线E既是轴对称图形,又是中心对称图形;②的最大值为;③的最小值为;④面积的最大值为.其中,正确命题的个数为()A.1个 B.2个C.3个 D.4个6.已知a,b为正数,,则下列不等式一定成立的是()A. B.C. D.7.设等差数列的前n项和为,且,则()A.64 B.72C.80 D.1448.设抛物线C:的焦点为,准线为.是抛物线C上异于的一点,过作于,则线段的垂直平分线()A.经过点 B.经过点C.平行于直线 D.垂直于直线9.已知向量,则下列结论正确的是()A.B.C.D.10.过点且与抛物线只有一个公共点的直线有()A.1条 B.2条C.3条 D.0条11.已知P是直线上的动点,PA,PB是圆的切线,A,B为切点,C为圆心,那么四边形PACB的面积的最小值是()A2 B.C.3 D.12.已知抛物线的焦点为,在抛物线上有一点,满足,则的中点到轴的距离为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设是定义在上的可导函数,且满足,则不等式解集为_______14.已知抛物线与直线交于D,E两点,若(点O为坐标原点)的面积为16,则抛物线的方程为______;过焦点F的直线l与抛物线交于A,B两点,则______15.一条光线从点射出,经x轴反射,其反射光线所在直线与圆相切,则反射光线所在的直线方程为____.16.某高中高二年级学生在学习完成数学选择性必修一后进行了一次测试,总分为100分.现用分层随机抽样方法从学生的数学成绩中抽取一个样本量为40的样本,再将40个成绩样本数据分为6组:40,50),50,60),60,70),70,80),80,90),90,100,绘制得到如图所示的频率分布直方图.(1)从所给的频率分布直方图中估计成绩样本数据众数,平均数,中位数;(2)在区间40,50)和90,100内的两组学生成绩样本数据中,随机抽取两个进调查,求调查对象来自不同分组的概率.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知向量,(1)求;(2)求;(3)若(),求的值18.(12分)已知两动圆:和:,把它们的公共点的轨迹记为曲线,若曲线与轴的正半轴的交点为,取曲线上的相异两点、满足:且点与点均不重合.(1)求曲线的方程;(2)证明直线恒经过一定点,并求此定点的坐标;19.(12分)如图,几何体中,平面,,,,E是中点,二面角的平面角为.(1)求证:平面;(2)求直线与平面所成角的正弦值.20.(12分)已知三棱柱中,,,平面ABC,,E为AB中点,D为上一点(1)求证:;(2)当D为中点时,求平面ADC与平面所成角的正弦值21.(12分)已知点,椭圆:离心率为,是椭圆的右焦点,直线的斜率为,为坐标原点.设过点的动直线与相交于,两点(1)求椭圆的方程(2)是否存在直线,使得的面积为?若存在,求出的方程;若不存在,请说明理由22.(10分)已知函数,其中(1)讨论的单调性;(2)若不等式对一切恒成立,求实数k的最大值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】,只需求出与的正、余弦值即可,用平方关系时注意角的范围.【详解】解:因为,都是锐角,所以,,因为,所以,即,,所以,,因为,所有,故选:B.【点睛】信息给予题,已知三角函数值求三角函数值,考查根据三角函数的恒等变换求值,基础题.2、B【解析】由两直线垂直可得出关于实数的等式,求解即可.【详解】由已知可得,解得.故选:B.3、D【解析】由题可得,将代入解方程即可.【详解】∵,∴,∴,解得.故选:D.4、B【解析】依题意可得,设,根据可得,,根据为抛物线上一点,可得.【详解】依题意可得,设,由得,所以,,所以,,因为为抛物线上一点,所以,解得.故选:B.【点睛】本题考查了平面向量加法的坐标运算,考查了求抛物线方程,属于基础题.5、D【解析】①:根据轴对称图形、中心对称图形的方程特征进行判断即可;②:结合两点间距离公式、曲线方程特征进行判断即可;③:根据卡西尼卵形线的定义,结合基本不等式进行判断即可;④:根据方程特征,结合三角形面积公式进行判断即可.【详解】当,时,.①:因为以代方程不变,以代方程不变,同时代,以代方程不变,所以曲线E既是轴对称图形,又是中心对称图形,因此本命题正确;②:由,所以有,所以,当时成立,因此本命题正确;③:因为,所以,当且仅当时,取等号,因此本命题正确;④:,因为,所以,的面积为,因此本命题正确,故选:D【点睛】关键点睛:利用方程特征进行求解判断是解题的关键.6、A【解析】构造新函数,以函数单调性把不等式转化为整式不等式即可解决.【详解】不等式可化为:令,则则函数为单调增函数.由可得故选:A7、B【解析】利用等差数列下标和性质,求得,再用等差数列前项和公式即可求解.【详解】根据等差数列的下标和性质,,解得,.故选:B.8、A【解析】依据题意作出焦点在轴上的开口向右的抛物线,根据垂直平分线的定义和抛物线的定义可知,线段的垂直平分线经过点,即可求解.【详解】如图所示:因为线段的垂直平分线上的点到的距离相等,又点在抛物线上,根据定义可知,,所以线段的垂直平分线经过点.故选:A.9、D【解析】由题可知:,,,故选;D10、B【解析】过的直线的斜率存在和不存在两种情况分别讨论即可得出答案.【详解】易知过点,且斜率不存在的直线为,满足与抛物线只有一个公共点.当直线的斜率存在时,设直线方程为,与联立得,当时,方程有一个解,即直线与扰物线只有一个公共点.故满足题意的直线有2条.故选:B11、D【解析】由圆C的标准方程可得圆心为(1,1),半径为1,根据切线的性质可得四边形PACB面积等于,,故求解最小时即可确定四边形PACB面积的最小值.【详解】圆C:x2+y2-2x-2y+1=0即,表示以C(1,1)为圆心,以1为半径的圆,由于四边形PACB面积等于2×××=,而,故当最小时,四边形PACB面积最小,又的最小值等于圆心C到直线l:的距离d,而,故四边形PACB面积的最小值为,故选:D12、A【解析】设点,利用抛物线的定义求出的值,可求得点的横坐标,即可得解.【详解】设点,易知抛物线的焦点为,由抛物线的定义可得,得,所以,点的横坐标为,故点到轴的距离为.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】构造函数,结合题意求得,由此判断出在上递增,由此求解出不等式的解集.【详解】令,,故函数在上单调递增,不等式可化为,则,解得:【点睛】本小题主要考查构造函数法解不等式,考查化归与转化的数学思想方法,属于基础题.14、①.②.1【解析】利用的面积列方程,化简求得的值,从而求得抛物线方程.将的斜率分成存在和不存在两种情况进行分类讨论,结合根与系数关系求得.【详解】依题意可知,,所以,解得.所以抛物线方程为.焦点,当直线的斜率不存在时,直线的方程为,,即,此时.当直线的斜率存在且不为时,设直线的方程为,由消去并化简得,,设,则,结合抛物线的定义可知.故答案为:;15、或【解析】点关于轴的对称点为,即反射光线过点,分别讨论反射光线的斜率存在与不存在的情况,进而求解即可【详解】点关于轴的对称点为,(1)设反射光线的斜率为,则反射光线的方程为,即,因为反射光线与圆相切,所以圆心到反射光线的距离,即,解得,所以反射光线方程为:;(2)当不存在时,反射光线,此时,也与圆相切,故答案为:或【点睛】本题考查直线在光学中的应用,考查圆的切线方程16、(1)众数;平均数,中位数.(2).【解析】(1)按“众数,平均数,中位数”的公式求解.(2)由频率分布直方图得到各区间的频率,再用古典概型求解.【小问1详解】众数取频率分布直方图中最高矩形对应区间的中点75;平均数;因为,所以中位数在区间上,且中位数【小问2详解】由频率分布直方图得出在区间40,50)和90,100内的成绩样本数据分别有4个和2个,从6个样本选2个共有个结果,记事件A=“调查对象来自不同分组”,结果有所以.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】(1)根据向量数量积的坐标表示即可得解;(2)求出,再根据空间向量的模的坐标表示即可得解;(3)由,可得,再根据数量积的运算律即可得解.【小问1详解】解:;【小问2详解】解:;【小问3详解】解:因为,所以,即,解得.18、(1);(2)证明见解析,.【解析】(1)设两动圆的公共点为,则有,运用椭圆的定义,即可得到,,,进而得到的轨迹方程;(2),设,,,,设出直线方程,联立方程组,利用韦达定理法及向量的数量积的坐标表示,即可得到定点.【小问1详解】设两动圆的公共点为,则有由椭圆的定义可知的轨迹为椭圆,设方程为,则,,所以曲线的方程是:【小问2详解】由题意可知:,且直线斜率存在,设,,设直线:,联立方程组,可得,,,因为,所以有,把代入整理化简得,或舍,因为点与点均不重合,所以直线恒过定点19、(1)证明见解答;(2)【解析】(1)平面,可得,是二面角的平面角,由余弦定理可得,,从而可证平面;(2)以为坐标原点,,,所在直线为坐标轴建立如图所示的空间直角坐标系,求平面的一个法向量与的方向向量,利用向量法可求直线与平面所成角的正弦值【小问1详解】证明:取中点,又是中点,,,平面,平面,,平面,是二面角的平面角,,又,,在中,由余弦定理有,可得,又是中点,,平面,,又,平面,平面.【小问2详解】解:以为坐标原点,,,所在直线为坐标轴建立如图所示的空间直角坐标系,则,0,,,1,,,0,,,1,,1,,,0,,,1,设平面的一个法向量为,,,则,令,则,,平面的一个法向量为,,,设直线与平面所成角为,则,直线与平面所成角的正弦值为20、(1)证明见解析;(2).【解析】(1)利用线面垂直的性质定理及线面垂直的判定定理即证;(2)利用坐标法即求.【小问1详解】∵,E为AB中点,∴,∵平面ABC,平面ABC,∴,又,,∴平面,平面,∴;【小问2详解】以C点为坐标原点,CA,CB,分别为x,y,z轴建立空间直角坐标系,不妨设,则平面的法向量为,设平面ADC法向量为,则,∴,即,令,则∴平面ADC与平面所成角的余弦值为,所以平面ADC与平面所成角的正弦值.21、(1);(2)存在;或.【解析】(1)设,由,,,求得的值即可得椭圆的方程;(2)设,,直线的方程为与椭圆方程联立可得,,进而可得弦长,求出点到直线的距离,解方程,求得的值即可求解.【小问1详解】设,因为直线的斜率为,,所以,可得,又因为,所以,所以,所以椭圆的方程为【小问2详解】假设存在直线,使得的面积为,当轴时,不合题意,设,,直线的方程为,联立消去得:,由可得或,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论