中考数学必考-半角模型-详解总结_第1页
中考数学必考-半角模型-详解总结_第2页
中考数学必考-半角模型-详解总结_第3页
中考数学必考-半角模型-详解总结_第4页
中考数学必考-半角模型-详解总结_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

(下载后获清晰版)中考数学必考-半角模型-详解总结建立模型如图,在四边形ABCD中,AB=AD,∠BAD+∠BCD=180°,点E、F分别是边BC、CD上的点,且∠EAF=1/2∠BAD.求证:EF=BE+DF.分析:要证明一条线段等于两条线段的和,我们首先想到的是"截长补短"添加辅助线.如下图,在线段EF上截取EG=EB.如果能证明线段GF=DF,则结论得证.而要证明两条线段相等,且两条线段不在同一个三角形中,可以尝试利用全等.即证明△ABE≌△AGE.通过尝试,我们发现很难证明这两个三角形全等,所以"截长"无法得到我们想要的结果.再试一试“补短”,延长CD至点G,使DG=EB.如下图:此时若能证明FG=FE,则FE=FG=FD+DG=FD+BE.结论得证.而要证明FE=FG,只需证明△AEF≌AGF即可.证明:延长FD至点G,使DG=BE.易证△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG.∴∠EAF=1/2∠BAD=∠BAE+∠FAD=∠DAG+∠FAD=∠GAF又∵AF=AF,∴△EAF≌△GAF.∴EF=GF=DF+DG=DF+BE反思:1、本题中的辅助线:延长DG=BE,也可以通过旋转来实现(实际上就是将三角形ABE绕点A逆时针旋转∠BAD的度数).需要指出的是,如果用旋转,需说明C、D、G三点共线(证明∠ADG+∠ADC=180°即可).2、题中有三个非常重要的元素:(1)∠EAF=1/2∠BAD(半角模型名称的由来);(2)AB=AD.共端点的两条线段相等,这点尤为关键,它为下一步的旋转提供了条件.当题中出现一个角等于另一角的一半,且共端点的线段相等时,常采用旋转,将分散的条件集中起来,为下一步的证明做好铺垫.(3)对角互补.由于对角互补的存在,通过旋转,两边的两个三角形可拼成一个大三角形,进而可证明三角形全等.一、半角结构之90°与45°先来看一道题目:如图,在正方形ABCD中,点E,F分别在BC,CD上,∠EAF=45°.求证:EF=BE+DF.证明:证明:∵四边形ABCD是正方形∴AB=AD且∠ABE+∠ADF=180°将△ABE绕点A逆时针旋转90°得到△ADG,此时点C、D、G三点共线.∴∠BAE=∠DAG,AE=AG.∵∠EAF=45°∴∠BAE+∠DAF=∠DAG+∠DAF=∠GAF=45°∴∠EAF=∠GAF.又∵AF=AF.∴△EAF≌△GAF.∴EF=GF=DF+DG=DF+BE.模型应用1:如图,在正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°.BE=2cm,DF=3cm.求正方形的边长.分析:根据上题的结论可知EF=BE+DF=5.设正方形的边长为x,那么CE=x-2,CF=x-3.在Rt△CEF中,根据勾股定理得,CE^2+CF^2=EF^2,即(x-2)^2+(x-3)^2=5^2,解得,x=6.所以正方形的边长为6以上的半角结构主要发生在四边形中,再次回顾半角结构中的重要元素:(1)半角(2)邻边相等(3)对角互补.半角模型中经常通过旋转将分散的条件集中起来,进而通过三角形的全等进行证明.在三角形中同样存在半角模型,下面以一道题为例来说明三角形中的半角模型.如图,在△ABC中,∠BAC=90°,AB=AC.点D,E是BC边上两点且∠DAE=45°求证:BD^2+CE^2=DE^2分析:看到这个结论,相信大部分同学首先想到的是勾股定理,但DE,BD,CE不在同一个三角形中.所以要想办法将他们集中在一个三角形里面,根据题中条件AB=AC,共端点的两条线段相等,可以尝试旋转.证明:因为AB=AC,且∠BAC=90°.将△ABD绕点A逆时针旋转90°得到△ACG,连接EG.如下图:由旋转的性质可知,△ABD≌△ACG.∴AD=AG,∠BAD=∠CAG,∠ABD=∠ACG=45°.∵∠DAE=45°,∴∠BAD+∠EAC=∠CAG+∠EAC=45°∴∠DAE=∠GAE∴△DAE≌△GAE(SAS)∴DE=GE在Rt△GCE中CE^2+CG^2=GE^2∵BD=CG,DE=CG∴BD^2+CE^2=DE^2反思:对于本题,我们通过旋转将分散的条件集中起来,进而得到结论。观察证明过程我们可以发现△AEG其实也可以看作是将△AED沿AE折叠的结果.于是我们思考本题能不能通过折叠进行解决呢?如图,将△ABD沿AD折叠,使点B落在点F处,连接EF.先证明△ACE≌△AFE,再证明△DFG为直角三角形,勾股定理即可得出结论.模型拓展1:如图,在正方形ABCD中,点E、F分别在边CD、BC的延长线上,且∠FAE=45°.试探究EF、BE、DF之间的数量关系,并证明.分析:根据前面的证明我们知道,当∠EAF在正方形内部时,EF=BE+DF.观察图形可以发现,显然在本题中线段BE的长度大于线段EF的长度,所以EF=BE+DF不可能成立.是否可能是EF=BE-DF呢?不妨一试.根据上题积累的经验,特别是题中有AB=AD这一条件,为旋转埋下了伏笔.所以可将△ADF进行旋转.如下图:证明:因为AB=AD,∠ADE=∠ABG=90°,将△ADF绕点A顺时针旋转90°,得到△ABG.由旋转的性质可知,∠FAG=∠DAB=90°,又因为∠FAE=45°,所以∠GAE=45°..所以∠FAE=∠GAE.又AF=AG,AE=AE所以△FAE≌△GAE所以EF=EG=BE-BG=BE-DF.反思:对于结论探索性问题,一般采用的方法是:观察、测量、猜想、证明.先通过观察,对各个量之间的关系有大致的想法,在通过测量验证自己的想法,结合测量猜想结论,最后通过一步一步有理有据的推理得出结论.当然,测量和猜想的先后顺序也可以调换,即先猜想结论,在通过测量进行验证,进而证明其正确性.模型拓展2:如图,在正方形ABCD中,点E,F分别是边BC,CD上的动点(不与B,C,D重合),且∠EAF=45°.对角线BD分别和AE、AF交于点M,N.连接NE.求证:△ANE是等腰直角三角形.证明:在△AMN和△BME中∠MAN=∠MBE=45°∠AMN=∠BME(对顶角相等)∴△AMN∽△BME所以AM:BM=MN:ME又∵∠AMB=∠EMN∴△ABM∽△NME∴∠ABM=∠NEM=45°又∠EAM=45°,所以∠ANE=180°-45°-45°=90°∴△ANE是等腰直角三角形.反思:1、解决本题的关键是发现题中的蝶形相似.即由△AMN∽△BME推出△ABM∽△NME.(见下图)2、连接MF,则△AMF也是等腰直角三角形;3、题中还能得到哪些结论?请你试着写出来,并证明.二、半角模型之120°与60°例1、如图,在△ABC中,AB=AC,∠BAC=120°.点D、E是BC边上两点,且∠DAE=60°.若BD=5,CE=8.求DE的长度.分析:根据题中已知,∠DAE=1/2∠BAC,且AB=AC.这是一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论