版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年黑龙江省绥化七中数学高二上期末质量跟踪监视试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆与双曲线有相同的焦点,则的值为A. B.C. D.2.已知椭圆的右焦点和右顶点分别为F,A,离心率为,且,则n的值为()A.4 B.3C.2 D.3.下列三个命题:①“若,则a,b全为0”的逆否命题是“若a,b全不为0,则”;②若事件A与事件B互斥,则;③设命题p:若m是质数,则m一定是奇数,那么是真命题;其中真命题的个数为()A.3 B.2C.1 D.04.已知,则“”是“”的()A.充分不必要条件 B.充要条件C.必要不充分条件 D.既不充分也不必要条件5.已知是定义在上的奇函数,对任意两个不相等的正数、都有,记,,,则()A. B.C. D.6.的展开式中的系数为,则()A. B.C. D.7.已知数列满足,则()A.2 B.C.1 D.8.双曲线的渐近线的斜率是()A.1 B.C. D.9.已知三棱锥OABC,点M,N分别为AB,OC的中点,且,用表示,则等于()A. B.C. D.10.已知某地区7%的男性和0.49%的女性患色盲.假如男性、女性各占一半,从中随机选一人,则此人恰是色盲的概率是()A.0.01245 B.0.05786C.0.02865 D.0.0374511.若是真命题,是假命题,则A.是真命题 B.是假命题C.是真命题 D.是真命题12.两位同学课余玩一种类似于古代印度的“梵塔游戏”:有3个柱子甲、乙、丙,甲柱上有个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图).把这个盘子从甲柱全部移到乙柱游戏结束,在移动的过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下.设游戏结束需要移动的最少次数为,则当时,和满足A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.数学中有许多形状优美、寓意美好的曲线,曲线就是其中之一(如图).给出下列三个结论:其中,所有正确结论的序号是____________①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到原点的距离都不超过;③曲线C所围城的“心形”区域的面积小于314.已知函数,,则曲线在处的切线方程为___________.15.如图,在棱长为2的正方体中,点分别是棱的中点,是侧面正方形内一点(含边界),若平面,则线段长度的取值范围是__________16.直线与曲线有且仅有一个公共点.则b的取值范围是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在等差数列中,设前项和为,已知,.(1)求的通项公式;(2)令,求数列的前项和.18.(12分)已知函数(1)当时,讨论的单调性;(2)当时,证明19.(12分)已知圆M经过原点和点,且它的圆心M在直线上.(1)求圆M的方程;(2)若点D为圆M上的动点,定点,求线段CD的中点P的轨迹方程.20.(12分)已知函数.其中e为然对数的底数(1)若,求函数的单调区间;(2)若,讨论函数的零点个数21.(12分)设数列的前项和为,且.(1)求数列的通项公式;(2)记,数列的前项和为,求不等式的解集.22.(10分)已知椭圆C的中心在原点,焦点在x轴上,长轴长为4,且点在椭圆上(1)经过点M(1,)作一直线交椭圆于AB两点,若点M为线段AB的中点,求直线的斜率;(2)设椭圆C的上顶点为P,设不经过点P的直线与椭圆C交于C,D两点,且,求证:直线过定点
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据题意可知,结合的条件,可知,故选C考点:椭圆和双曲线性质2、B【解析】根据椭圆方程及其性质有,求解即可.【详解】由题设,,整理得,可得.故选:B3、B【解析】写出逆否命题可判断①;根据互斥事件的概率定义可判断②;根据写出再判断真假可判断③.【详解】对于①,“,则a,b全为0”的逆否命题是“若a,b不全为0,则”,故①错误;对于②,满足互斥事件的概率求和的方法,所以②为真命题;③命题p:若m是质数,则m一定是奇数.2是质数,但2是偶数,命题p是假命题,那么真命题故选:B.4、B【解析】求得中的取值范围,由此确定充分、必要条件.【详解】,,所以“”是“”的充要条件.故选:B5、A【解析】由题,可得是定义在上的偶函数,且在上单调递减,在上单调递增,根据函数的单调性,即可判断出的大小关系.【详解】设,由题,得,即,所以函数在上单调递减,因为是定义在R上的奇函数,所以是定义在上的偶函数,因此,,,即.故选:A【点睛】本题主要考查利用函数的单调性判断大小的问题,其中涉及到构造函数的运用.6、B【解析】根据二项式展开式的通项,先求得x的指数为1时r的值,再求得a的值.【详解】由题意得:二项式展开式的通项为:,令,则,故选:B7、D【解析】首先得到数列的周期,再计算的值.【详解】由条件,可知,两式相加可得,即,所以数列是以周期为的周期数列,.故选:D8、B【解析】由双曲线的渐近线方程为:,化简即可得到答案.【详解】双曲线的渐近线方程为:,即,渐近线的斜率是.故选:B9、D【解析】根据空间向量的加法、减法和数乘运算可得结果.【详解】.故选:D10、D【解析】设出事件,利用全概率公式进行求解.【详解】用事件A,B分别表示随机选1人为男性或女性,用事件C表示此人恰是色盲,则,且A,B互斥,故故选:D11、D【解析】因为是真命题,是假命题,所以是假命题,选项A错误,是真命题,选项B错误,是假命题,选项C错误,是真命题,选项D正确,故选D.考点:真值表的应用.12、C【解析】通过写出几项,寻找规律,即可得到和满足的递推公式.【详解】若甲柱有个盘,甲柱上的盘从上往下设为,其中,,当时,将移到乙柱,只移动1次;当时,将移到乙柱,将移到乙柱,移动2次;当时,将移到丙柱,将移到丙柱,将移到乙柱,再将移到乙柱,将移到乙柱,;当时,将上面的3个移到丙柱,共次,然后将移到乙柱,再将丙柱的3个移到乙柱,共次,所以次;当时,将上面的4个移到丙柱,共次,然后将移到乙柱,再将丙柱的4个移到乙柱,共次,所以次;……以此类推,可知,故选.【点睛】主要考查了数列递推公式的求解,属于中档题.这类型题的关键是写出几项,寻找规律,从而得到对应的递推公式.二、填空题:本题共4小题,每小题5分,共20分。13、①②【解析】根据题意,先判断曲线关于轴对称,由基本不等式的性质对方程变形,得到,可判定①正确;当时,,得到曲线右侧部分的点到原点的距离都不超过,再根据曲线的对称性,可判定②正确;由轴的上方,图形的面积大于四点围成的矩形的面积,在轴的下方,图形的面积大于三点围成的三角形的面积,可判断③不正确.【详解】根据题意,曲线,用替换曲线方程中的,方程不变,所以曲线关于轴对称,对于①中,当时,,即为,可得,所以曲线经过点,再根据对称性可知,曲线还经过点,故曲线恰好经过6个整点,所以①正确;对于②中,由①可知,当时,,即曲线右侧部分的点到原点的距离都不超过,再根据曲线的对称性可知,曲线上任意一点到原点的距离都不超过,所以②正确;对于③中,因为在轴的上方,图形的面积大于四点围成的矩形的面积,在轴的下方,图形的面积大于三点围成的三角形的面积,所以曲线所围城的“心形”区域的面积大于3,所以③不正确.故选:①②14、【解析】根据导数的几何意义求得在点处的切线方程.【详解】由,求导,知,又,则函数在点处的切线方程为.故答案为:15、【解析】取的中点G,连接FG,BG,FB,由正方体的几何特征,易证平面AEC//平面BFG,再根据是侧面内一点(含边界),且平面,得到点P在线段BG上运动,然后在等腰中求解.【详解】如图所示:取的中点G,连接FG,BG,FB,在正方体中,易得又因为平面BFG,平面BFG,所以平面BFG,同理证得平面BFG,又因为,所以平面AEC//平面BFG,因为是侧面内一点(含边界),且平面,所以点P线段BG上运动,如图所示:在等腰中,作,且,所以,设点F到线段BG的距离为d,由等面积法得,解得,所以线段长度的取值范围是,故答案为:16、或.【解析】根据曲线方程得曲线的轨迹是个半圆,数形结合分析得两种情况:(1)直线与半圆相切有一个交点;(2)直线与半圆相交于一个点,综合两种情况可得答案.【详解】由曲线,可得,表示以原点为圆心,半径为的右半圆,是倾斜角为的直线与曲线有且只有一个公共点有两种情况:(1)直线与半圆相切,根据,所以,结合图像可得;(2)直线与半圆的上半部分相交于一个交点,由图可知.故答案为:或.【点睛】方法点睛:处理直线与圆位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法;如果或有限制,需要数形结合进行分析.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据等差数列的前项和公式,即可求解公差,再计算通项公式;(2)根据(1)的结果,利用裂项相消法求和.【小问1详解】设的公差为,由已知得,解得,所以.【小问2详解】所以.18、(1)单调递减,在单调递增;(2)见解析.【解析】(1)求f(x)导数,讨论导数的正负即可求其单调性;(2)由于,则,只需证明,构造函数,证明其最小值大于0即可.【小问1详解】时,,当时,,∴,当时,,∴,∴在单调递减,在单调递增;【小问2详解】由于,∴,∴只需证明,令,则,∴在上为增函数,而,∴在上有唯一零点,且,当时,,g(x)单调递减,当时,,g(x)单调递增,∴的最小值为,由,得,则,∴,当且仅当时取等号,而,∴,∴,即,∴当时,.【点睛】本题考察了利用导数研究函数的单调性,也考察了利用导数研究函数的最值,解题过程中设计到隐零点的问题,需要掌握隐零点处理问题的常见思路和方法.19、(1).(2).【解析】(1)设圆M的方程为,由已知条件建立方程组,求解即可;(2)设,,依题意得.代入圆M的方程可得点P的轨迹方程.【小问1详解】解:设圆M的方程为,则圆心依题意得,解得.所以圆M的方程为.【小问2详解】解:设,,依题意得,得.点为圆M上的动点,得,化简得P的轨迹方程为.20、(1)单调递减区间为,单调递增区间为和;(2)当时,无零点;当时,有1个零点;当时,有2个零点.【解析】(1)求导,令导数大于零求增区间,令导数小于零求减区间;(2)求导数,分、、a>2讨论函数f(x)单调性和零点即可.【小问1详解】当时,,易知定义域为R,,当时,;当或时,故的单调递减区间为,单调递增区间为和;【小问2详解】当时,x正0负0正单增极大值单减极小值单增当时,恒成立,∴;当时,①当时,,∴无零点;②当时,,∴有1个零点;③当时,,又当时,单调递增,,∴有2个零点;综上所述:当时,无零点;当时,有1个零点;当时,有2个零点【点睛】结论点睛:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用21、(1)(2)【解析】(1)利用与的关系求解即可;(2)首先利用裂项求和得到,从而得到,再解不等式即可.【小问1详解】令,则,当时,,当时,也符合上式,即数列的通项公式为.【小问2详解】由(1)得,则,所以故可化为:,故,故不等式的解集为.22、(1);(2)证明见解析.【解析】(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淮阴师范学院《空间交互设计》2022-2023学年第一学期期末试卷
- 淮阴师范学院《家具设计》2022-2023学年第一学期期末试卷
- 淮阴师范学院《影视改编与文化创意》2022-2023学年第一学期期末试卷
- 淮阴工学院《数据分析与挖掘》2023-2024学年期末试卷
- 淮阴师范学院《机器学习》2023-2024学年期末试卷
- DB1405-T 058-2024煤层气排采技术规范
- 文书模板-《电气线路装调实训报告总结》
- 五年级写人的作文450字【六篇】
- 制糖行业销售渠道整合策略考核试卷
- 建筑机电安装工人安全知识手册考核试卷
- 中学生物学的科学思想和科学方法
- 安装培训方案
- 2023边缘物联代理技术要求
- 普宁市北部中心水厂榕江取水工程环境影响报告书
- 不良资产项目律师法律尽调报告(模板)
- 接交车辆检查表-原版
- 剪辑师职业生涯规划与管理
- 水稻栽培技术-水稻常规栽培技术
- 四风整改台账清单
- 标准报价单模板(二)
- 【期中】第1-4单元易错题专项攻略-数学四年级上册苏教版(含答案)
评论
0/150
提交评论