2023-2024学年河北省曲阳一中高二数学第一学期期末统考模拟试题含解析_第1页
2023-2024学年河北省曲阳一中高二数学第一学期期末统考模拟试题含解析_第2页
2023-2024学年河北省曲阳一中高二数学第一学期期末统考模拟试题含解析_第3页
2023-2024学年河北省曲阳一中高二数学第一学期期末统考模拟试题含解析_第4页
2023-2024学年河北省曲阳一中高二数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年河北省曲阳一中高二数学第一学期期末统考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知空间向量,则()A. B.C. D.2.已知是等比数列,,,则()A. B.C. D.3.已知双曲线,则该双曲线的实轴长为()A.1 B.2C. D.4.甲、乙两名同学同时从教室出发去体育馆打球(路程相等),甲一半时间步行,一半时间跑步;乙一半路程步行,一半路程跑步.如果两人步行速度、跑步速度均相等,则()A.甲先到体育馆 B.乙先到体育馆C.两人同时到体育馆 D.不确定谁先到体育馆5.古希腊数学家阿波罗尼奥斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数k(k>0且k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知O(0,0),A(3,0),动点P(x,y)满,则动点P轨迹与圆的位置关系是()A.相交 B.相离C.内切 D.外切6.双曲线的渐近线的斜率是()A.1 B.C. D.7.已知实数,满足不等式组,若,则的最小值为()A. B.C. D.8.若抛物线焦点坐标为,则的值为A. B.C.8 D.49.阿基米德(Archimedes,公元前287年-公元前212年),出生于古希腊西西里岛叙拉古(今意大利西西里岛上),伟大的古希腊数学家、物理学家,与高斯、牛顿并称为世界三大数学家.有一类三角形叫做阿基米德三角形(过抛物线的弦与过弦端点的两切线所围成的三角形),他利用“通近法”得到抛物线的弦与抛物线所围成的封闭图形的面积等于阿基米德三角形面积的(即右图中阴影部分面积等于面积的).若抛物线方程为,且直线与抛物线围成封闭图形的面积为6,则()A.1 B.2C. D.310.在正方体中,与直线和都垂直,则直线与的关系是()A.异面 B.平行C.垂直不相交 D.垂直且相交11.若双曲线的一条渐近线方程为.则()A. B.C.2 D.412.抛物线的准线方程是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的左右焦点分别为,过点的直线交双曲线右支于A,B两点,若是等腰三角形,且,则的面积为___________.14.已知分别是平面α,β,γ的法向量,则α,β,γ三个平面中互相垂直的有________对15.如图,四边形和均为正方形,它们所在的平面互相垂直,动点在线段上,、分别为、的中点.设异面直线与所成的角为,则的最大值为____16.以点为圆心,且与直线相切的圆的方程是____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列满足:成等差数列,成等比数列.(1)求的通项公式:(2)在数列的每相邻两项与间插入个,使它们和原数列的项构成一个新数列,数列的前项和记为,求及.18.(12分)已知点,,线段是圆的直径.(1)求圆的方程;(2)过点的直线与圆相交于,两点,且,求直线的方程.19.(12分)某外语学校的一个社团中有7名同学,其中2人只会法语;2人只会英语,3人既会法语又会英语,现选派3人到法国的学校交流访问(1)在选派的3人中恰有2人会法语的概率;(2)在选派的3人中既会法语又会英语的人数X的分布列和数学期望20.(12分)点与定点的距离和它到直线:的距离的比是常数.(1)求动点的轨迹的方程;(2)点在(1)中轨迹上运动轴,为垂足,点满足,求点轨迹方程.21.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,满足(2a﹣b)sinA+(2b﹣a)sinB=2csinC.(1)求角C的大小;(2)若cosA=,求的值.22.(10分)如图,四棱锥的底面为正方形,底面,设平面与平面的交线为.(1)证明:;(2)已知,为直线上的点,求与平面所成角的正弦值的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】A利用向量模长的坐标表示判断;B根据向量平行的判定,是否存在实数使即可判断;C向量数量积的坐标表示求即可判断;D利用向量坐标的线性运算及数量积的坐标表示求即可.【详解】因为,所以A不正确:因为不存在实数使,所以B不正确;因为,故,所以C正确;因为,所以,所以D不正确故选:C2、D【解析】由,,可求出公比,从而可求出等比数的通项公式,则可求出,得数列是一个等比数列,然后利用等比数的求和公式可求得答案【详解】由题得.所以,所以.所以,所以数列是一个等比数列.所以=.故选:D3、B【解析】根据给定的双曲线方程直接计算即可作答.【详解】双曲线的实半轴长,所以该双曲线的实轴长为2.故选:B4、A【解析】设出总路程与步行速度、跑步速度,表示出两人所花时间后比较不等式大小【详解】设总路程为,步行速度,跑步速度对于甲:,得对于乙:,当且仅当时等号成立,而,故,乙花时间多,甲先到体育馆故选:A5、A【解析】首先求得点的轨迹,再利用圆心距与半径的关系,即可判断两圆的位置关系.【详解】由条件可知,,化简为:,动点的轨迹是以为圆心,2为半径的圆,圆是以为圆心,为半径的圆,两圆圆心间的距离,所以两圆相交.故选:A6、B【解析】由双曲线的渐近线方程为:,化简即可得到答案.【详解】双曲线的渐近线方程为:,即,渐近线的斜率是.故选:B7、B【解析】作出不等式组对应的平面区域,然后根据线性规划的几何意义求得答案.【详解】作出不等式组所对应的可行域如图三角形阴影部分,平行移动直线直线,可以看到当移动过点A时,在y轴上的截距最小,联立,解得,当且仅当动直线即过点时,取得最小值为,故选:B8、A【解析】先把抛物线方程整理成标准方程,进而根据抛物线的焦点坐标,可得的值.【详解】抛物线的标准方程为,因为抛物线的焦点坐标为,所以,所以,故选A.【点睛】该题考查的是有关利用抛物线的焦点坐标求抛物线的方程的问题,涉及到的知识点有抛物线的简单几何性质,属于简单题目.9、D【解析】根据题目所给条件可得阿基米德三角形的面积,再利用三角形面积公式即可求解.【详解】由题意可知,当过焦点的弦垂直于x轴时,即时,,即,故选:D10、B【解析】以为坐标原点,所在直线分别为轴,轴,轴建立空间直角坐标系,根据向量垂直的坐标表示求出,再利用向量的坐标运算可得,根据共线定理即可判断.【详解】设正方体的棱长为1.以为坐标原点,所在直线分别为轴,轴,轴建立空间直角坐标系,则.设,则,取.,.故选:B【点睛】本题考查了空间向量垂直的坐标表示、空间向量的坐标表示、空间向量共线定理,属于基础题.11、C【解析】求出渐近线方程为,列出方程求出.【详解】双曲线的渐近线方程为,因为,所以,所以.故选:C12、D【解析】将抛物线的方程化为标准方程,可得出该抛物线的准线方程.【详解】抛物线的标准方程为,则,可得,因此,该抛物线的准线方程为.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题意可知,,再结合,即可求出各边,从而求出的面积【详解】,所以,而是的等腰三角形,所以,故的面积为故答案为:14、0【解析】计算每两个向量的数量积,判断该两个向量是否垂直,可得答案.【详解】因为,,.所以中任意两个向量都不垂直,即α,β,γ中任意两个平面都不垂直故答案为:0.15、【解析】如图所示,建立空间直角坐标系,设,,,,,由向量法可得,令,,,利用导数研究函数的单调性即可求得的最大值,从而可得答案【详解】解:由题意,根据已知条件,直线AB,AD,AQ两两互相垂直,所以建立如图所示空间直角坐标系不妨设,则,0,,,0,,,1,,设,,,,,,,,,,,令,,则,函数在上单调递减,时,函数取得最大值,的最大值为故答案为:16、【解析】根据直线与圆相切,圆心到直线距离等于半径,由点到直线的距离公式求出半径,然后可得.【详解】圆心到直线的距离,又圆与直线相切,所以,所以圆的方程为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2),.【解析】(1)根据等差数列和等比数列的通项公式进行求解即可;(2)根据等差数列的通项公式,结合等比数列的前项和公式进行求解即可.【小问1详解】设等差数列的公差为,因为成等差数列,所以有,因成等比数列,所以,所以;【小问2详解】由题意可知:在和之间插入个,在和之间插入个,,在和之间插入个,此时共插入的个数为:,在和之间插入个,此时共插入的个数为:,因此.18、(1);(2)或.【解析】(1)AB两点的中点为圆心,AB两点距离的一半为半径;(2)分斜率存在和不存在,根据垂径定理即可求解.【小问1详解】已知点,,线段是圆M的直径,则圆心坐标为,∴半径,∴圆的方程为;【小问2详解】由(1)可知圆的圆心,半径为.设为中点,则,,则.当的斜率不存在时,的方程为,此时,符合题意;当的斜率存在时,设的方程为,即kx-y+2=0,则,解得,故直线的方程为,即.综上,直线的方程为或.19、(1)(2)分布列见解析;【解析】(1)利用组合的知识计算出基本事件总数和满足题意的基本事件数,根据古典概型概率公式求得结果;(2)确定所有可能的取值,根据超几何分布概率公式可计算出每个取值对应的概率,进而得到分布列和数学期望.【小问1详解】名同学中,会法语的人数为人,从人中选派人,共有种选法;其中恰有人会法语共有种选法;选派的人中恰有人会法语的概率.【小问2详解】由题意可知:所有可能的取值为,;;;;的分布列为:数学期望为20、(1);(2)【解析】(1)根据题意用表示出与,再代入,再化简即可得出答案。(2)设,利用表示出点,再将点代入椭圆,化简即可得出答案。【详解】(1)由题意知,所以化简得:(2)设,因为,则将代入椭圆得化简得【点睛】本题考查轨迹方程,一般求某点的轨迹方程,只需要设该点为,利用所给条件建立的关系式,化简即可。属于基础题。21、(1)(2)【解析】(1)利用正弦定理、余弦定理化简已知条件,求得,由此求得.(2)先求得,结合两角差的正弦公式求得.【小问1详解】,,即,,,.【小问2详解】由,可得,.22、(1)证明见解析(2)【解析】(1)由可证得平面,根据线面平行

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论