2023-2024学年黑龙江省黑河市高二上数学期末复习检测试题含解析_第1页
2023-2024学年黑龙江省黑河市高二上数学期末复习检测试题含解析_第2页
2023-2024学年黑龙江省黑河市高二上数学期末复习检测试题含解析_第3页
2023-2024学年黑龙江省黑河市高二上数学期末复习检测试题含解析_第4页
2023-2024学年黑龙江省黑河市高二上数学期末复习检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年黑龙江省黑河市高二上数学期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数在上的最小值为()A. B.4C. D.2.已知等差数列的前n项和为,且,,则为()A. B.C. D.3.已知圆C过点,圆心在x轴上,则圆C的方程为()A. B.C. D.4.年1月初,中国多地出现散发病例甚至局部聚集性疫情,在此背景下,各地陆续发出“春节期间非必要不返乡”的倡议,鼓励企事业单位职工就地过年.某市针对非本市户籍并在本市缴纳社保,且春节期间在本市过年的外来务工人员,每人发放1000元疫情专项补贴.小张是该市的一名务工人员,则“他在该市过年”是“他可领取1000元疫情专项补贴”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.在平面直角坐标系中,直线+的倾斜角是()A. B.C. D.6.若直线a不平行于平面,则下列结论正确的是()A.内的所有直线均与直线a异面 B.直线a与平面有公共点C.内不存在与a平行的直线 D.内的直线均与a相交7.过点且平行于直线的直线的方程为()A. B.C. D.8.某同学为了调查支付宝中的75名好友的蚂蚁森林种树情况,对75名好友进行编号,分别为1,2,…,75,采用系统抽样的方法抽取一个容量为5的样本,已知11号,26号,56号,71号好友在样本中,则样本中还有一名好友的编号是()A.40 B.41C.42 D.399.已知双曲线:的左、右焦点分别为,,过点且斜率为的直线与双曲线在第二象限的交点为,若,则双曲线的离心率是()A. B.C. D.10.已知、是椭圆的两个焦点,P为椭圆C上一点,且,若的面积为9,则的值为()A.1 B.2C.3 D.411.算盘是中国传统计算工具,是中国人在长期使用算筹的基础上发明的,“珠算”一词最早见于东汉徐岳所撰的《数术记遗》,其中有云:“珠算控带四时,经纬三才.”北周甄鸾为此作注,大意是:把木板刻为3部分,上、下两部分是停游珠用的,中间一部分是作定位用的.下图是一把算盘的初始状态,自右向左,分别是个位、十位、百位…,上面一粒珠(简称上珠)代表5,下面一粒珠(简称下珠)是1,即五粒下珠的大小等于同组一粒上珠的大小.现在从个位和十位这两组中随机选择往下拨一粒上珠,往上拨3粒下珠,得到的数为质数(除了1和本身没有其它的约数)的概率是()A. B.C. D.12.某中学举行党史学习教育知识竞赛,甲队有、、、、、共名选手其中名男生名女生,按比赛规则,比赛时现场从中随机抽出名选手答题,则至少有名女同学被选中的概率是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.随机抽取某社区名居民,调查他们某一天吃早餐所花的费用(单位:元),所获数据的茎叶图如图所示,则这个数据的众数是_________14.双曲线离心率__________.15.已知过点作抛物线的两条切线,切点分别为A、B,直线经过抛物线C的焦点F,则___________16.定义方程的实数根叫做函数的“新驻点”.(1)设,则在上的“新驻点”为___________;(2)如果函数与的“新驻点”分别为、,那么和的大小关系是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥中,是边长为4的正三角形,为正方形,平面平面,、分别为、中点.(1)证明:平面;(2)求直线EP与平面AEF所成角的正弦值.18.(12分)已知三角形的内角所对的边分别为,且C为钝角.(1)求cosA;(2)若,,求三角形的面积.19.(12分)已知数列的前项和为,并且满足(1)求数列的通项公式;(2)若,数列的前项和为,求证:20.(12分)已知椭圆的离心率,过椭圆C的焦点且垂直于x轴的直线截椭圆所得到的线段的长度为1(1)求椭圆C的方程;(2)直线交椭圆C于A、B两点,若y轴上存在点P,使得是以AB为斜边的等腰直角三角形,求的面积的取值范围21.(12分)新高考取消文理分科,采用选科模式,这赋予了学生充分的自由选择权.新高考地区某校为了解本校高一年级将来高考选考物理的情况,随机选取了100名高一学生,将他们某次物理测试成绩(满分100分)按照,,,,分成5组,制成如图所示的频率分布直方图.(1)求图中的值并估计这100名学生本次物理测试成绩的中位数.(2)根据调查,本次物理测试成绩不低于60分的学生,高考将选考物理科目;成绩低于60分的学生,高考将不选考物理科目.按分层抽样的方法从测试成绩在,的学生中选取5人,再从这5人中任意选取2人,求这2人中至少有1人高考选考物理科目的概率.22.(10分)如图,在四棱雉中,平面ABCD,底面ABCD是直角梯形,其中,,,,E为棱BC上的点,且(1)求证:平面PAC;(2)求二面角A-PC-D的正弦值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】求出导数,由导数确定函数在上的单调性与极值,可得最小值【详解】,所以时,,递减,时,,递增,所以是在上的唯一极值点,极小值也是最小值.故选:D2、C【解析】直接由等差数列求和公式结合,求出,再由求和公式求出即可.【详解】由题意知:,解得,则.故选:C.3、C【解析】设出圆的标准方程,将已知点的坐标代入,解方程组即可.【详解】设圆的标准方程为,将坐标代入得:,解得,故圆的方程为,故选:C.4、B【解析】根据充分条件、必要条件的定义进行判定.【详解】只有非本市户籍并在本市缴纳社保的外来务工人员就地过年,才可领取1000元疫情专项补贴,小张是该市的一名务工人员,但他可能是本市户籍或非本市户籍但在本市未缴纳社保,所以“他在该市过年”是“他可领取1000元疫情专项补贴”的必要不充分条件.故选:B.5、B【解析】由直线方程得斜率,从而得倾斜角【详解】由直线方程知直角斜率为,在上正切值为1的角为,即为倾斜角故选:B6、B【解析】根据题意可得直线a与平面相交或在平面内,结合线面的位置关系依次判断选项即可.【详解】若直线a不平行与平面,则直线a与平面相交或在平面内.A:内的所有直线均与直线a异面错误,也可能相交,故A错误;B:直线a与平面相交或直线a在平面内都有公共点,故B正确;C:平面内不存在与a平行的直线,错误,当直线a在平面内就存在与a平行的直线,故C错误;D:平面内的直线均与a相交,错误,也可能异面,故D错误.故选:B7、B【解析】根据平行设直线方程,代入点计算得到答案.【详解】设直线方程为,将点代入直线方程得到,解得.故直线方程为:.故选:B.8、B【解析】根据系统抽样等距性即可确定结果.【详解】根据系统抽样等距性得:11号,26号,56号,71号以及还有一名好友的编号应该按大小排列后成等差数列,样本中还有一名好友的编号为26号与56号的等差中项,即41号,故选:B【点睛】本题考查系统抽样,考查基本分析求解能力,属基础题.9、B【解析】根据得到三角形为等腰三角形,然后结合双曲线的定义得到,设,进而作,得出,由此求出结果【详解】因为,所以,即所以,由双曲线的定义,知,设,则,易得,如图,作,为垂足,则,所以,即,即双曲线的离心率为.故选:B10、C【解析】根据椭圆定义,和条件列式,再通过变形计算求解.【详解】由条件可知,,即,解得:.故选:C【点睛】本题考查椭圆的定义,焦点三角形的性质,重点考查转化与变形,计算能力,属于基础题型.11、B【解析】根据古典概型概率计算公式,计算出所求的概率.【详解】依题有,算盘所表示的数可能有:17,26,8,35,62,71,80,53,其中是质数的有:17,71,53,故所求事件的概率为故选:B12、D【解析】现场选名选手,共种情况,设,,,四位同学为男同学则没有女同学被选中的情况,共有6种,利用对立事件进行求解,即可得到答案;【详解】现场选名选手,基本事件有:,,,,,,,,,,,,,,共种情况,不妨设,,,四位同学为男同学则没有女同学被选中的情况是:,,,,,共种,则至少有一名女同学被选中的概率为.故选:.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】将个数据写出来,可得出这组数据的众数.【详解】这个数据分别为、、、、、、、、、、、、、、,该组数据的众数为.故答案为:.14、【解析】由已知得到a,b,再利用及即可得到答案.【详解】由已知,可得,所以,所以.故答案为:15、64【解析】用字母进行一般化研究,先求出切点弦方程,再联立化简,最后代入数据计算【详解】设,点处的切线方程为联立,得由,得即,解得所以点处的切线方程为,整理得同理,点处的切线方程为设为两切线的交点,则所以在直线上即直线AB的方程为又直线AB经过焦点所以,即联立得所以所以本题中所以故答案为:64【点睛】结论点睛:过点作抛物线的两条切线,切点弦的方程为16、①.②.【解析】(1)根据“新驻点”的定义求得,结合可得出结果;(2)求出的值,利用零点存在定理判断所在的区间,进而可得出与的大小关系.详解】(1),,根据“新驻点”的定义得,即,可得,,解得,所以,函数在上的“新驻点”为;(2),则,根据“新驻点”的定义得,即.,则,由“新驻点”的定义得,即,构造函数,则函数在定义域上为增函数,,,,由零点存在定理可知,,.故答案为:(1);(2).【点睛】本题考查导数的计算,是新定义的题型,关键是理解“新驻点”的定义.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】(1)连接,证明,即可证明平面;(2)取的中点,连接,由平面平面,得平面,建立如图所示空间直角坐标系,利用向量法即可求得答案.【小问1详解】证明:连接,是正方形,是的中点,是的中点,是的中点,,平面,平面,平面;【小问2详解】取的中点,连接,则,因为是边长为4的正三角形,所以,因为平面平面,且平面平面,所以平面,建立如图所示空间直角坐标系,则,则,设平面的法向量,则有,可取,则,所以直线EP与平面AEF所成角的正弦值为.18、(1)(2)【解析】(1)由正弦定理边化角,可求得角的正弦,由同角关系结合条件可得答案.(2)由(1),由余弦定理,求出边的长,进一步求得面积【小问1详解】因为,由正弦定理得因,所以.因为角为钝角,所以角为锐角,所以【小问2详解】由(1),由余弦定理,得,所以,解得或,不合题意舍去,故的面积为=19、(1);(2)证明见解析.【解析】(1)利用和项可求得的通项公式,注意别漏了说明;(2)先用错位相减法求出数列的前项和,从而可知【详解】(1),①当时,,②由①—②可得:,且数列是首项为1,公差为2的等差数列,即(2)由(1)知数列,,则,①∴,②由①﹣②得,∴,.【点睛】本题主要考查给出的一个关系式求数列的通项公式以及用错位相减法求数列的前n项和.20、(1)(2)【解析】(1)由条件可得,解出即可;(2)设,,取AB的中点,联立直线与椭圆的方程消元,算出,,然后可算出,然后由可得,然后表示出的面积可得答案.小问1详解】令,得,所以,解得,,所以椭圆C的方程:【小问2详解】设,,取AB的中点,因为为以AB为斜边的等腰直角三角形,所以且,联立得,则∴又∵,∴,且,,∴,由得,∴∴21、(1),中位数为;(2).【解析】(1)由频率和为1求参数a,根据直方图及中位数性质求中位数即可.(2)首先由分层抽样原则求选取的5人在、的人数分布情况,再应用列举法求古典概型的概率即可.【小问1详解】由图知:,解得.学生成绩在的频率为;学生成绩在的频率为.设这100名学生本次物理测试成绩的中位数为,则,解得,故估计这100名学生本次物理测试成绩的中位数为.【小问2详解】由(1)知,学生成绩在的频数为,学生成绩在的频数为.按分层抽样的方法从中选取5人,则成绩在的学生被抽取人,分别记为,,成绩在的学生被抽取人,分别记为,,.从中任意选取2人,有,,,,,,,,,这10种选法,其中至少有1人高考选考物理科目的选法有,,,,,,,,这9种,∴这2人中至少有1人高考选考物理科目的概率.22、(1)证明见解析(2)【解析】建立空间直角坐标系,计算出相关点的坐标,进而计算出相关向量的坐标;(1)计算

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论