2023-2024学年甘肃省通渭县第二中学高二上数学期末调研模拟试题含解析_第1页
2023-2024学年甘肃省通渭县第二中学高二上数学期末调研模拟试题含解析_第2页
2023-2024学年甘肃省通渭县第二中学高二上数学期末调研模拟试题含解析_第3页
2023-2024学年甘肃省通渭县第二中学高二上数学期末调研模拟试题含解析_第4页
2023-2024学年甘肃省通渭县第二中学高二上数学期末调研模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年甘肃省通渭县第二中学高二上数学期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线l和抛物线交于A,B两点,O为坐标原点,且,交AB于点D,点D的坐标为,则p的值为()A. B.1C. D.22.已知球O的半径为2,球心到平面的距离为1,则球O被平面截得的截面面积为()A. B.C. D.3.下列求导运算正确的是()A. B.C. D.4.圆截直线所得弦的最短长度为()A.2 B.C. D.45.函数单调减区间是()A. B.C.和 D.6.已知直线与垂直,则为()A.2 B.C.-2 D.7.已知直线l1:ax+2y=0与直线l2:2x+(2a+2)y+1=0垂直,则实数a的值为()A.﹣2 B.C.1 D.1或﹣28.若圆与圆相切,则的值为()A. B.C.或 D.或9.已知数列的通项公式为,其前项和为,则满足的的最小值为()A.30 B.31C.32 D.3310.过点P(2,1)作直线l,使l与双曲线-y2=1有且仅有一个公共点,这样的直线l共有A.1条 B.2条C.3条 D.4条11.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中偶数的个数为()A.24 B.18C.12 D.612.下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则二、填空题:本题共4小题,每小题5分,共20分。13.已知在△中,角A,B,C的对边分别是a,b,c,若△的面积为2,边上中线的长为.且,则△外接圆的面积为___________14.若,,都为正实数,,且,,成等比数列,则的最小值为______15.某天上午只排语文、数学、体育三节课,则体育不排在第一节课的概率为_________16.已知直线:与直线:平行,则的值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数,其中,为自然对数的底数.(1)讨论单调性;(2)证明:当时,.18.(12分)已知椭圆:的左、右焦点分别为,,离心率为,且过点.(1)求椭圆的标准方程;(2)若过点的直线与椭圆相交于,两点(A、B非椭圆顶点),求的最大值.19.(12分)已知函数,.(1)当时,求不等式的解集;(2)若在上恒成立,求取值范围.20.(12分)如图所示,在直三棱柱中,是等腰直角三角形,(1)证明:;(2)若点E是棱的中点,求平面与平面所成锐二面角的余弦值21.(12分)已知数列满足且(1)求证:数列为等差数列,并求数列的通项公式;(2)设,求数列的前n项和为.22.(10分)在平面直角坐标系xOy中,曲线的参数方程为,(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)已知,曲线与曲线相交于A,B两点,求.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由垂直关系得出直线l方程,联立直线和抛物线方程,利用韦达定理以及数量积公式得出p的值.【详解】,,即联立直线和抛物线方程得设,则解得故选:B2、B【解析】根据球的性质可求出截面圆的半径即可求解.【详解】由球的性质可知,截面圆的半径为,所以截面的面积.故选:B3、B【解析】根据基本初等函数的导数和求导法则判断.【详解】,,,,只有B正确.故选:B.【点睛】本题考查基本初等函数的导数公式,考查导数的运算法则,属于基础题.4、A【解析】由题知直线过定点,且在圆内,进而求解最值即可.【详解】解:将直线化为,所以联立方程得所以直线过定点将化为标准方程得,即圆心为,半径为,由于,所以点在圆内,所以点与圆圆心间的距离为,所以圆截直线所得弦的最短长度为故选:A5、B【解析】根据函数求导,然后由求解.【详解】因为函数,所以,由,解得,所以函数的单调递减区间是,故选:B6、A【解析】利用一般式中直线垂直的系数关系列式求解.【详解】因为直线与垂直,故选:A.7、B【解析】由题意,利用两直线垂直的性质,两直线垂直时,一次项对应系数之积的和等于0,计算求得a的值【详解】∵直线l1:ax+2y=0与直线l2:2x+(2a+2)y+1=0垂直,∴a×2+2×(2a+2)=0,求得a=﹣,故选:B8、C【解析】分类讨论:当两圆外切时,圆心距等于半径之和;当两圆内切时,圆心距等于半径之差,即可求解.【详解】圆的圆心为,半径为,圆的圆心为,半径为.①当两圆外切时,有,此时.②当两圆内切时,有,此时.综上,当时两圆外切;当时两圆内切.故选:C【点睛】本题考查了圆与圆的位置关系,解答两圆相切问题时易忽略两圆相切包括内切和外切两种情况.解答时注意分类讨论,属于基础题.9、C【解析】由条件可得得出,再由解出的范围,得出答案.【详解】由,则由,即,即,所以所以满足的的最小值为为32故选:C10、B【解析】利用几何法,结合双曲线的几何性质,得出符合条件的结论.【详解】由双曲线的方程可知其渐近线方程为y=±x,则点P(2,1)在渐近线y=x上,又双曲线的右顶点为A(2,0),如图所示.满足条件的直线l有两条:x=2,y-1=-(x-2)【点睛】该题考查的是有关直线与双曲线的公共点有一个的条件,结合双曲线的性质,结合图形,得出结果,属于中档题目.11、C【解析】根据题意,结合计数原理中的分步计算,以及排列组合公式,即可求解.【详解】根据题意,要使组成无重复数字的三位数为偶数,则从0,2中选一个数字为个位数,有种可能,从1,3,5中选两个数字为十位数和百位数,有种可能,故这个无重复数字的三位数为偶数的个数为.故选:C.12、C【解析】先举例说明ABD不成立,再根据不等式性质说明C成立.【详解】当时,满足,但不成立,所以A错;当时,满足,但不成立,所以B错;当时,满足,但不成立,所以D错;因为所以,又,因此同向不等式相加得,即C对;故选:C【点睛】本题考查不等式性质,考查基本分析判断能力,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、或【解析】由已知,结合正弦定理边角关系及三角形内角的性质可得,再根据三角形面积公式、余弦定理列方程求边长b、c,应用余弦定理求边长a,根据正弦定理求外接圆半径,再用圆的面积公式求面积.【详解】由题设及正弦定理边角关系有,又,∴,∴,∴.又,∴,即又据题意,得,且,∴或,故或,∴△外接圆的半径或,∴△外接圆的面积为或故答案为:或14、##【解析】利用等比中项及条件可得,进而可得,再利用基本不等式即得.【详解】∵,,都为正实数,,,成等比数列,∴,又,∴,即,∴,∴,当且仅当,即取等号.故答案为:.15、【解析】写出语文、数学、体育的所有可能排列,找出其中体育不排在第一节课的情况,利用概率公式计算即可.【详解】所有可能结果如下:(语文,数学,体育);(语文,体育,数学);(数学,语文,体育):(数学,体育,语文);(体育,语文,数学);(体育,数学,语文),其中体育不排在第一节课的情况有四种,则体育不排在第一节课的概率16、-1【解析】根据两直线平行的条件列式求解即可.【详解】由题意可知,的斜率,的斜率,∵,∴解得.故当时,直线:与直线:平行.故答案为:-1.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析(2)答案见解析【解析】(1)求导数,分和,两种情况讨论,即可求得的单调性;(2)令,利用导数求得单调递增,结合,得到,进而证得.【详解】(1)由函数,可得,当时,,在内单调递减;当时,由有,当时,,单调递减;当时,,单调递增.(2)证明:令,则,当时,,单调递增,因为,所以,即,当时,可得,即【点睛】利用导数证明不等式常见类型及解题策略(1)构造差函数.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.18、(1)(2)【解析】(1)根据离心率和点在椭圆上建立方程,结合,然后解出方程即可(2)设直线的斜率为,联立直线与椭圆的方程,然后利用韦达定理表示出,两点的坐标关系,并表示出为直线斜率的函数,然后求出的最大值【小问1详解】由椭圆过点,则有:由可得:解得:则椭圆的方程为:【小问2详解】由(1)得,,已知直线不过椭圆长轴顶点则直线的斜率不为,设直线的方程为:设,,联立直线方程和椭圆方程整理可得:故是恒成立的根据韦达定理可得:,则有:由,可得:所以的最大值为:19、(1)或;(2).【解析】(1)解不含参数的一元二次不等式即可求出结果;(2)二次函数的恒成立问题需要对二次项系数是否为0进行分类讨论,即可求出结果.【详解】(1)当时,,即,解得或,所以,解集为或.(2)因为在上恒成立,①当时,恒成立;②当时,,解得,综上,的取值范围为.20、(1)证明见解析(2)【解析】(1)根据线面垂直的判定定理证出平面,即可证得;(2)以A为原点,分别以所在直线为x轴,y轴,z轴建立空间直角坐标系,根据二面角的向量公式即可求出【小问1详解】如图,连接,由已知可得四边形是正方形,所以在直三棱柱中,平面平面,交线为,在中,可知,所以平面,于因为,所以平面,而平面,所以【小问2详解】如图所示,以A为原点,分别以所在直线为x轴,y轴,z轴建立空间直角坐标系,则,于是设平面的法向量为,则,可取而平面的一个法向量为,所以故平面与平面所成锐二面角的余弦值为21、(1)证明见解析,;(2).【解析】(1)对递推公式进行变形,结合等差数列的定义进行求解即可;(2)运用裂项相消法进行求解即可.【小问1详解】因为,且,所以即,所以数列是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论