版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年甘肃省兰州市第六十三中学高二上数学期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过抛物线()的焦点作斜率大于的直线交抛物线于,两点(在的上方),且与准线交于点,若,则A. B.C. D.2.已知椭圆:的离心率为,则实数()A. B.C. D.3.在平面直角坐标系中,已知椭圆的上、下顶点分别为、,左顶点为,左焦点为,若直线与直线互相垂直,则椭圆的离心率为A. B.C. D.4.一个盒子里有3个分别标有号码为1,2,3小球,每次取出一个,记下它的标号后再放回盒子中,共取2次,则在两次取得小球中,标号最大值是3的概率为()A. B.C. D.5.如图,平面四边形中,,,,为等边三角形,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A. B.C. D.6.记等比数列的前项和为,若,,则()A.12 B.18C.21 D.277.已知数列中,其前项和为,且满足,数列的前项和为,若对恒成立,则实数的值可以是()A. B.2C.3 D.8.设函数,则和的值分别为()A.、 B.、C.、 D.、9.观察下列各式:,,,,,可以得出的一般结论是A.B.C.D.10.设变量,满足约束条件则的最小值为()A.3 B.-3C.2 D.-211.某种产品的广告费支出与销售额(单位:万元)之间的关系如下表:245683040605070若已知与的线性回归方程为,那么当广告费支出为5万元时,随机误差的效应(残差)为万元(残差=真实值-预测值)A.40 B.30C.20 D.1012.平面与平面平行的充分条件可以是()A.平面内有一条直线与平面平行B.平面内有两条直线分别与平面平行C.平面内有无数条直线分别与平面平行D平面内有两条相交直线分别与平面平行二、填空题:本题共4小题,每小题5分,共20分。13.已知数列的前n项和为,且满足通项公式,则________14.若点为圆的弦的中点,则弦所在直线方程为________.15.已知函数有且仅有两个不同的零点,则实数的取值范围是__________.16.过圆内的点作一条直线,使它被该圆截得的线段最长,则直线的方程是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求的单调区间;(2)讨论的零点个数.18.(12分)已知双曲线的右焦点与抛物线的焦点相同,且过点.(1)求双曲线渐近线方程;(2)求抛物线的标准方程.19.(12分)已知复数,其中i是虚数单位,m为实数(1)当复数z为纯虚数时,求m的值;(2)当复数在复平面内对应的点位于第三象限时,求m的取值范围20.(12分)已知数列的前项和为,已知,且当,时,(1)证明数列是等比数列;(2)设,求数列的前项和21.(12分)已知椭圆的焦距为4,点在G上.(1)求椭圆G方程;(2)过椭圆G右焦点的直线l与椭圆G交于M,N两点,O为坐标原点,若,求直线l的方程.22.(10分)在等差数列{an}中,a3+a4=15,a2a5=54,公差d<0.(1)求数列{an}的通项公式an;(2)求数列的前n项和Sn的最大值及相应的n值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分别过作准线的垂线,垂足分别为,设,则,,故选A.2、C【解析】根据题意,先求得的值,代入离心率公式,即可得答案.【详解】因为,所以所以,解得.故选:C3、C【解析】依题意,直线与直线互相垂直,,,故选4、C【解析】求出两次取球都没有取到3的概率,再利用对立事件的概率公式计算作答.【详解】依题意,每次取到标号为3的球的事件为A,则,且每次取球是相互独立的,在两次取得小球中,标号最大值是3的事件M,其对立事件是两次都没有取到标号为3的球的事件,,则有,所以在两次取得小球中,标号最大值是3的概率为.故选:C5、A【解析】将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,在中,计算半径即可.【详解】由,,可知平面将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,记的外心为,由为等边三角形,可得又,故在中,此即为外接球半径,从而外接球表面积为故选:A【点睛】本题考查了三棱锥外接球的表面积,考查了学生空间想象,逻辑推理,综合分析,数学运算的能力,属中档题.6、C【解析】根据等比数列的性质,可知等比数列的公比,所以成等比数列,根据等比的中项性质即可求出结果.【详解】因为为等比数列的前项和,且,,易知等比数列的公比,所以成等比数列所以,所以,解得.故选:C7、D【解析】由求出,从而可以求,再根据已知条件不等式恒成立,可以进行适当放大即可.【详解】若n=1,则,故;若,则由得,故,所以,,又因为对恒成立,当时,则恒成立,当时,,所以,,,若n为奇数,则;若n为偶数,则,所以所以,对恒成立,必须满足.故选:D8、D【解析】求得,即可求得、的值.【详解】,则,则,故,.故选:D.9、C【解析】1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,由上述式子可以归纳:左边每一个式子均有2n-1项,且第一项为n,则最后一项为3n-2右边均为2n-1的平方故选C点睛:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想)10、D【解析】转化为,则最小即直线在轴上的截距最大,作出不等式组表示的可行域,数形结合即得解【详解】转化为,则最小即直线在轴上的截距最大作出不等式组表示的可行域如图中阴影部分所示,作出直线,平移该直线,当直线经过时,在轴上的截距最大,最小,此时,故选:D11、D【解析】分析:把所给的广告费支出5万元时,代入线性回归方程,做出相应的销售额,这是一个预测值,再求出与真实值之间有一个误差即得.详解:与的线性回归方程为,当时,50,当广告费支出5万元时,由表格得:,故随机误差的效应(残差)为万元.故选D.点睛:本题考查回归分析的初步应用,考查求线性回归方程,考查预测y的值,是一个综合题12、D【解析】根据平面与平面平行的判定定理可判断.【详解】对A,若平面内有一条直线与平面平行,则平面与平面可能平行或相交,故A错误;对B,若平面内有两条直线分别与平面平行,若这两条直线平行,则平面与平面可能平行或相交,故B错误;对C,若平面内有无数条直线分别与平面平行,若这无数条直线互相平行,则平面与平面可能平行或相交,故C错误;对D,若平面内有两条相交直线分别与平面平行,则根据平面与平面平行的判定定理可得平面与平面平行,故D正确.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由时,,可得,利用累乘法得,从而即可求解.【详解】因为,所以时,,即,化简得,又,所以,检验时也成立,所以,所以,故答案:.14、【解析】因为为圆的弦的中点,所以圆心坐标为,,所在直线方程为,化简为,故答案为.考点:1、两直线垂直斜率的关系;2、点斜式求直线方程.15、【解析】函数有两个不同零点即y=a与g(x)=图像有两个交点,画出近似图象即得a的范围﹒【详解】∵函数有且仅有两个不同的零点,令,则y=a与g(x)=图像有两个交点,∵,∴当时,,单调递减,当时,,单调递增,∴当时,,作出函数与的图象,∴当时,y=a与g(x)有两个交点﹒故答案为:﹒16、【解析】当直线l过圆心时满足题意,进而求出答案.【详解】圆的标准方程为:,圆心,当l过圆心时满足题意,,所以l的方程为:.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调递增区间是和,单调递减区间是(2)时,有1个零点;或时,有2个零点;时,有3个零点.【解析】(1)求解函数的导数,再运用导数求解函数的单调区间即可;(2)根据导数分析原函数的极值,进而讨论其零点个数.【详解】(1)因为,所以由,得或;由,得.故单调递增区间是和,单调递减区间是.(2)由(1)可知的极小值是,极大值是.①当时,方程有且仅有1个实根,即有1个零点;②当时,方程有2个不同实根,即有2个零点;③当时,方程有3个不同实根,即有3个零点;④当时,方程有2个不同实根,即有2个零点;⑤当时,方程有1个实根,即有1个零点.综上,当或时,有1个零点;当或时,有2个零点;当时,有3个零点.18、(1)(2)【解析】(1)将已知点代入双曲线方程,然后可得;(2)由双曲线右焦点与抛物线的焦点相同可解.【小问1详解】因为双曲线过点,所以所以,得又因为,所以所以双曲线的渐近线方程【小问2详解】由(1)得所以所以双曲线的右焦点是所以抛物线的焦点是所以,所以所以抛物线的标准方程19、(1)4(2)【解析】(1)根据纯虚数,实部为零,虚部不为零列式即可;(2)根据第三象限,实部小于零,虚部小于零,列式即可.【小问1详解】因为为纯虚数,所以解得或,且且综上可得,当为纯虚数时;【小问2详解】因为在复平面内对应的点位于第三象限,解得或,且即,故的取值范围为.20、(1)证明见解析;(2).【解析】(1)消去,只保留数列的递推关系,根据题干提示来证明,注意证明首项不是零;(2)利用裂项求和来解决.【小问1详解】证明:由题意,当时,即,,整理,得,,,,数列是以2为首项,2为公比的等比数列【小问2详解】解:由(1)知,,则,,,,,各项相加,可得,当n=1成立,故21、(1);(2).【解析】(1)根据已知求出即得椭圆的方程;(2)设l的方程为,,,联立直线和椭圆的方程得到韦达定理,根据得到,即得直线l的方程.【小问1详解】解:椭圆的焦距是4,所以焦点坐标是,.因为点在G上,所以,所以,.所以椭圆G的方程是.【小问2详解】解:显然直线l不垂直于x轴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 影视制作定向合作协议
- 农业项目草场租赁合同
- 仓储物流中心建设模板
- 生态扶贫与保护政策与措施
- 商业综合体建造师聘用合同模板
- 燃气管道改造施工协议
- 质量保证协议书烟草分销商
- 大型码头码头地面压路机施工合同
- 糕点面包厂管理
- 孕期妊娠期糖尿病
- 国家开放大学《可编程控制器应用实训》形考任务6参考答案
- 2024陆上风电场工程可行性研究报告编制规程
- 国家开放大学本科《纳税筹划》在线形考(形考任务三)试题及答案
- 交通工程中的人因工程与智能化
- 内分泌科疾病护理常规内分泌系统疾病护理常规
- 民航服务心理案例分析
- (高清版)JTGT 3371-01-2022 公路沉管隧道设计规范
- 【110kv水电站电气一次部分设计17000字(论文)】
- 第一单元中国特色社会主义的开创、坚持、捍卫和发展单元测试-2023-2024学年中职高教版(2023)中国特色社会主义
- 产后尿潴留的预防及护理
- 世界学生日活动主题班会
评论
0/150
提交评论