2023-2024学年甘肃省金昌市高二上数学期末质量检测试题含解析_第1页
2023-2024学年甘肃省金昌市高二上数学期末质量检测试题含解析_第2页
2023-2024学年甘肃省金昌市高二上数学期末质量检测试题含解析_第3页
2023-2024学年甘肃省金昌市高二上数学期末质量检测试题含解析_第4页
2023-2024学年甘肃省金昌市高二上数学期末质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年甘肃省金昌市高二上数学期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,直线与直线平行,则()A. B.C. D.2.平面的法向量为,平面的法向量为,则下列命题正确的是()A.,平行 B.,垂直C.,重合 D.,相交不垂直3.已知点是抛物线上的一点,F是抛物线的焦点,则点M到F的距离等于()A.6 B.5C.4 D.24.下列说法或运算正确的是()A.B.用反证法证明“一个三角形至少有两个锐角”时需设“一个三角形没有锐角”C.“,”的否定形式为“,”D.直线不可能与圆相切5.已知双曲线,其中一条渐近线与x轴的夹角为,则双曲线的渐近线方程是()A. B.C. D.6.已知直线过点,且其方向向量,则直线的方程为()A. B.C. D.7.过椭圆的左焦点作弦,则最短弦的长为()A. B.2C. D.48.已知空间向量,,,则()A.4 B.-4C.0 D.29.下列抛物线中,以点为焦点的是()A. B.C. D.10.在正三棱锥中,,且,M,N分别为BC,AD的中点,则直线AM和CN夹角的余弦值为()A. B.C. D.11.国际冬奥会和残奥会两个奥运会将于2022年在北京召开,这是我国在2008年成功举办夏季奥运会之后的又一奥运盛事.某电视台计划在奥运会期间某段时间连续播放5个广告,其中3个不同的商业广告和2个不同的奥运宣传广告,要求最后播放的必须是奥运宣传广告,且2个奥运宣传广告不能相邻播放,则不同的播放方式有()A.120种 B.48种C.36种 D.18种12.设函数在上可导,则等于()A. B.C. D.以上都不对二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线,的左、右焦点分别为、,且的焦点到渐近线的距离为1,直线与交于,两点,为弦的中点,若为坐标原点)的斜率为,,则下列结论正确的是____________①;②的离心率为;③若,则的面积为2;④若的面积为,则为钝角三角形14.已知抛物线方程为,则其焦点坐标为__________15.已知,动点满足,则点的轨迹方程为___________.16.抛物线焦点坐标是,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,记f(x)的导数为f′(x).若曲线f(x)在点(1,f(1))处的切线斜率为﹣3,且x=2时y=f(x)有极值,(Ⅰ)求函数f(x)的解析式;(Ⅱ)求函数f(x)在[﹣1,1]上的最大值和最小值18.(12分)已知动点到点的距离与点到直线的距离相等.(1)求动点的轨迹方程;(2)若过点且斜率为的直线与动点的轨迹交于、两点,求三角形AOB的面积.19.(12分)如图,在四棱锥中P﹣ABCD中,底面ABCD是边长为2的正方形,BC⊥平面PAB,PA⊥AB,PA=2(1)求证:PA⊥平面ABCD;(2)求平面PAD与平面PBC所成角的余弦值20.(12分)已知函数.(1)设函数,讨论在区间上的单调性;(2)若存在两个极值点,()(极值点是指函数取极值时对应的自变量的值),且,证明:.21.(12分)已知抛物线的准线方程是,直线与抛物线相交于M、N两点(1)求抛物线的方程;(2)求弦长;(3)设O为坐标原点,证明:22.(10分)已知椭圆C与椭圆有相同的焦点,且长轴长为4(1)求C的标准方程;(2)直线,分别经过点与C相切,切点分别为A,B,证明:

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据直线平行求解即可.【详解】因为直线与直线平行,所以,即,经检验,满足题意.故选:C2、B【解析】根据可判断两平面垂直.【详解】因为,所以,所以,垂直.故选:B.3、B【解析】先求出,再利用焦半径公式即可获解.【详解】由题意,,解得所以故选:B.4、D【解析】对于A:可以解决;对于B:“一个三角形至少由两个锐角”的反面是“只有一个锐角或没有锐角”;对于C:全称否定必须是全部否定;对于D:需要观察出所给直线是过定点的.【详解】A:,故错误;B:“一个三角形至少由两个锐角”的反面是“只有一个锐角或没有锐角”,所以用反证法时应假设只有一个锐角和没有锐角两种情况,故错误;C:的否定形式是,故错误;D:直线是过定点(-1,0),而圆,圆心为(2,0),半径为4,定点(-1,0)到圆心的距离为2-(-1)=3<4,故定点在圆内,故正确;故选:D.5、C【解析】由已知条件计算可得,即得到结果.【详解】由双曲线,可知渐近线方程为,又双曲线的一条渐近线与x轴的夹角为,故,即渐近线方程为.故选:C6、D【解析】根据题意和直线的点方向式方程即可得出结果.【详解】因为直线过点,且方向向量为,由直线的点方向式方程,可得直线的方程为:,整理,得.故选:D7、A【解析】求出椭圆的通径,即可得到结果【详解】过椭圆的左焦点作弦,则最短弦的长为椭圆的通径:故选:A8、A【解析】根据空间向量平行求出x,y,进而求得答案.【详解】因为,所以存在实数,使得,则.故选:A.9、A【解析】由题意设出抛物线的方程,再结合焦点坐标即可求出抛物线的方程.【详解】∵抛物线为,∴可设抛物线方程为,∴即,∴抛物线方程为,故选:A.10、B【解析】由题意可得两两垂直,所以以为原点,所在的直线分别为轴,建立空间直角坐标系,利用空间向量求解【详解】因为,所以两两垂直,所以以为原点,所在的直线分别为轴,建立空间直角坐标系,如图所示,因为,所以,因为M,N分别为BC,AD的中点,所以,所以,设直线AM和CN所成的角为,则,所以直线AM和CN夹角的余弦值为,故选:B11、C【解析】先考虑最后位置必为奥运宣传广告,再将另一奥运广告插入3个商业广告之间,最后对三个商业广告全排列,即可求解.【详解】先考虑最后位置必为奥运宣传广告,有种,另一奥运广告插入3个商业广告之间,有种;再考虑3个商业广告的顺序,有种,故共有种.故选:C.12、C【解析】根据目标式,结合导数的定义即可得结果.【详解】.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、②④【解析】由已知可得,可求,,从而判断①②,求出△的面积可判断③,设,,利用面积求出点的坐标,再求边长,求出可判断④【详解】解:设,,,,可得,,两式相减可得,由题意可得,且,,,,,,故②正确;的焦点到渐近线的距离为1,设到渐近线的距离为,则,即,,故①错误,,若,不妨设在右支上,,又,,则的面积为,故③不正确;设,,,,将代入双曲线,得,,根据双曲线的对称性,不妨取点的坐标为,,,,,为钝角,为钝角三角形.故④正确故答案为:②④14、【解析】先将抛物线的方程转化为标准方程的形式,即可判断抛物线的焦点坐标为,从而解得答案.【详解】解:因为抛物线方程为,即,所以,,所以抛物线的焦点坐标为,故答案为:.15、【解析】表示出、,根据题意,列出等式,化简整理即可得答案.【详解】,由题意得,所以整理可得,即.故答案为:.16、2【解析】根据抛物线的几何性质直接求解可得.【详解】的焦点坐标为,即.故答案为:2三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)f(x)=x3﹣3x2+1;(Ⅱ)最大值为1,最小值为﹣3【解析】(Ⅰ)求导可得f′(x)的解析式,根据导数的几何意义,可得k=f′(1)=-3,又在x=2处有极值,所以f′(2)=0,即可求得a,b的值,即可得答案;(Ⅱ)由(Ⅰ)可得f′(x)的解析式,令f′(x)=0,解得x=0或x=2,讨论f(x)在﹣1<x<0,0<x<1上的单调性,即可求得f(x)的极值,检验边界值,即可得答案.【详解】(Ⅰ)由题意得:f′(x)=3x2+2ax+b,所以k=f′(1)=3+2a+b=﹣3,f′(2)=12+4a+b=0,解得a=﹣3,b=0,所以f(x)=x3﹣3x2+1;(Ⅱ)由(Ⅰ)知,令f′(x)=3x2﹣6x=0,解得x=0或x=2,当﹣1<x<0时,f′(x)>0,f(x)在(﹣1,0)是增函数,当0<x<1时,f′(x)<0,f(x)在(0,1)是减函数,所以f(x)的极大值为f(0)=1,又f(1)=﹣1,f(﹣1)=﹣3,所以f(x)在[﹣1,1]上的最大值为1,最小值为﹣318、(1)(2)【解析】小问1:由抛物线的定义可求得动点的轨迹方程;小问2:可知直线的方程为,设点、,将直线的方程与抛物线的方程联立,求出的值,利用抛物线的定义可求得的值,结合面积公式即可求解小问1详解】由题意点的轨迹是以为焦点,直线为准线的抛物线,所以,则,所以动点的轨迹方程是.【小问2详解】由已知直线的方程是,设、,由得,,所以,则,故,19、(1)证明见解析;(2).【解析】(1)根据线面垂直的判定定理来证得平面.(2)建立空间直角坐标系,利用向量法来求得平面与平面所成角的余弦值.【小问1详解】由于平面,所以,由于,所以平面.【小问2详解】建立如图所示空间直角坐标系,平面的法向量为,,设平面的法向量为,则,故可设.设平面与平面所成角为,则.20、(1)答案见解析(2)证明见解析【解析】(1)由题意得,然后对其求导,再分,两种情况讨论导数的正负,从而可求出函数的单调区间,(2)由(1)结合零点存在性定理可得在和上各有一个零点,且是的两个极值点,再将极值点代入导函数中化简结合已知可得,,从而将要证的结论转化为证,令,再次转化为利用导数求的最小值大于零即可【小问1详解】由,得,则,当时,在上单调递增;当时,令.当时,单调递增;当时,单调递减.综上,当时,的增区间为,无减区间当时,的增区间为,减区间为小问2详解】由(1)知若存在两个极值点,则,且,且注意到,所以在和上各有一个零点,且时,单调递减;当时,单调递增;当时,单调递减.所以是的两个极值点.,因为,所以,所以,所以,即,所以而,所以,所以,要证,即要证即要证:因为,所以所以,即要证:即要证:令,即要证:即要证:令当时,,所以在上单调增所以结论得证.【点睛】关键点点睛:此题考查导数的应用,考查利用求函数的单调区间,考查利用导数证明不等式,解题的关键是将两个极值点代入导函数中化简后,将问题转化为证明成立,换元后构造函数,再利用导数证明,考查数学转化思想和计算能力,属于较难题21、(1);(2);(3)详见解析.【解析】(1)根据抛物线的准线方程求解;(2)由直线方程与抛物线方程联立,利用弦长公式求解;(3)结合韦达定理,利用数量积运算证明;【小问1详解】解:因为抛物线的准线方程是,所以,解得,所以抛物线的方程是;【小问

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论