2023-2024学年吉林省东辽五中高二上数学期末质量跟踪监视试题含解析_第1页
2023-2024学年吉林省东辽五中高二上数学期末质量跟踪监视试题含解析_第2页
2023-2024学年吉林省东辽五中高二上数学期末质量跟踪监视试题含解析_第3页
2023-2024学年吉林省东辽五中高二上数学期末质量跟踪监视试题含解析_第4页
2023-2024学年吉林省东辽五中高二上数学期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年吉林省东辽五中高二上数学期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列的通项公式为,按项的变化趋势,该数列是()A.递增数列 B.递减数列C.摆动数列 D.常数列2.胡萝卜中含有大量的胡萝卜素,摄入人体消化器官后,可以转化为维生素,现从,两个品种的胡萝卜所含的胡萝卜素(单位:)得到茎叶图如图所示,则下列说法不正确的是A. B.的方差大于的方差C.品种的众数为 D.品种的中位数为3.在空间直角坐标系中,点关于原点对称的点的坐标为()A. B.C. D.4.已知是上的单调增函数,则的取值范围是A.﹣1b2 B.﹣1b2C.b﹣2或b2 D.b﹣1或b25.中国古代数学名著九章算术中有这样一个问题:今有牛、马、羊食人苗,苗主责之栗五斗羊主曰:“我羊食半马”马主曰:“我马食半牛”今欲哀偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗的主人要求赔偿5斗栗羊主人说:“我羊所吃的禾苗只有马的一半”马主人说:“我马所吃的禾苗只有牛的一半”打算按此比率偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还栗a升,b升,c升,1斗为10升,则下列判断正确的是A.a,b,c依次成公比为2的等比数列,且B.a,b,c依次成公比为2的等比数列,且C.a,b,c依次成公比为的等比数列,且D.a,b,c依次成公比为的等比数列,且6.已知点,若直线与线段没有公共点,则的取值范围是()A. B.C. D.7.双曲线的焦点到渐近线的距离为()A.1 B.2C. D.8.已知直线与椭圆:()相交于,两点,且线段的中点在直线:上,则椭圆的离心率为()A. B.C. D.9.等比数列的各项均为正数,且,则=()A.8 B.16C.32 D.6410.等差数列的首项为正数,其前n项和为.现有下列命题,其中是假命题的有()A.若有最大值,则数列的公差小于0B.若,则使的最大的n为18C.若,,则中最大D.若,,则数列中的最小项是第9项11.已知、分别是双曲线的左、右焦点,为一条渐近线上的一点,且,则的面积为()A. B.C. D.112.已知不等式的解集为,关于x的不等式的解集为B,且,则实数a的取值范围为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设为第二象限角,若,则__________14.复数(其中i为虚数单位)的共轭复数______15.已知点P为椭圆上的任意一点,点,分别为该椭圆的左、右焦点,则的最大值为______________.16.已知函数是上的奇函数,,对,成立,则的解集为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆,直线.(1)若直线与椭圆相切,求实数的值;(2)若直线与椭圆相交于A、两点,为线段的中点,为坐标原点,且,求实数的值.18.(12分)记为等差数列的前项和,已知,.(1)求的通项公式;(2)求,并求的最小值.19.(12分)已知数列满足,,.(1)证明:数列是等比数列,并求其通项公式;(2)若,求数列的前项和.20.(12分)已知数列通项公式为:,其中.记为数列的前项和(1)求,;(2)数列的通项公式为,求的前项和21.(12分)已知数列的前项和为,且满足,,成等比数列,.(1)求数列的通项公式;(2)令,求数列的前项和.22.(10分)已知函数(…是自然对数的底数).(1)求的单调区间;(2)求函数的零点的个数.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】分析的单调性,即可判断和选择.【详解】因为,显然随着的增大,是递增的,故是递减的,则数列是递减数列.故选:B.2、C【解析】读懂茎叶图,分别计算出众数、中位数、方差,然后对各选项进行判断【详解】由茎叶图知,品种所含胡萝卜素普遍高于品种,所以,故A正确;品种的数据波动比品种的数据波动大,所以的方差大于的方差,故B正确;品种的众数为与,故C错误;品种的数据的中位数为,故D正确.故选.【点睛】本题主要考查了对数据的分析,首先要读懂茎叶图,然后计算出众数、中位数、方差,即可对各选项进行判断,较为基础3、C【解析】根据点关于原点对称的性质即可知答案.【详解】由点关于原点对称,则对称点坐标为该点对应坐标的相反数,所以.故选:C4、A【解析】利用三次函数的单调性,通过其导数进行研究,求出导数,利用其导数恒大于0即可解决问题【详解】∵∴∵函数是上的单调增函数∴在上恒成立∴,即.∴故选A.【点睛】可导函数在某一区间上是单调函数,实际上就是在该区间上(或)(在该区间的任意子区间都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围,本题是根据相应的二次方程的判别式来进行求解.5、D【解析】由条件知,,依次成公比为的等比数列,三者之和为50升,根据等比数列的前n项和,即故答案为D.6、A【解析】分别求出,即可得到答案.【详解】直线经过定点.因为,所以,所以要使直线与线段没有公共点,只需:,即.所以的取值范围是.故选:A7、A【解析】分别求出双曲线的焦点坐标和渐近线方程,利用点到直线的距离公式求出结果【详解】双曲线中,焦点坐标为渐近线方程为:∴双曲线的焦点到渐近线的距离故选:A8、A【解析】将直线代入椭圆方程整理得关于的方程,运用韦达定理,求出中点坐标,再由条件得到,再由,,的关系和离心率公式,即可求出离心率.【详解】解:将直线代入椭圆方程得,,即,设,,,,则,即中点的横坐标是,纵坐标是,由于线段的中点在直线上,则,又,则,,即椭圆的离心率为.故选:A9、B【解析】由等比数列的下标和性质即可求得答案.【详解】由题意,,所以.故选:B.10、B【解析】由有最大值可判断A;由,可得,,利用可判断BC;,得,,可判断D.【详解】对于选项A,∵有最大值,∴等差数列一定有负数项,∴等差数列为递减数列,故公差小于0,故选项A正确;对于选项B,∵,且,∴,,∴,,则使的最大的n为17,故选项B错误;对于选项C,∵,,∴,,故中最大,故选项C正确;对于选项D,∵,,∴,,故数列中的最小项是第9项,故选项D正确.故选:B.11、A【解析】先表示出渐近线方程,设出点坐标,利用,解出点坐标,再按照面积公式求解即可.【详解】由题意知,双曲线渐近线方程为,不妨设在上,设,由得,解得,的面积为.故选:A.12、B【解析】解出不等式可得集合,由可得,然后可得在上恒成立,然后分离参数求解即可.【详解】由得,,解得,因为,所以所以可得在上恒成立,即在上恒成立,故只需,,当时,,故故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求出,再利用二倍角公式求的值.【详解】因为为第二象限角,若,所以.所以.故答案为【点睛】本题主要考查同角三角函数的平方关系,考查二倍角的正弦公式,意在考查学生对这些知识的理解掌握水平,属于基础题.14、##【解析】根据共轭复数的概念,即可得答案.【详解】由题意可知:复数(其中i为虚数单位)的共轭复数,故答案为:15、【解析】利用正弦定理表示出,再求t,再利用求的最大值即可.【详解】在中,由正弦定理得,所以,,即求的最大值,也就是求t的最小值,而,即最大时,由椭圆的性质知当P为椭圆上顶点时最大,此时,,所以,所以的最大值是1,,所以,故答案为:.【点睛】本题考查椭圆焦点三角形的问题,考查正弦定理的应用.16、【解析】根据题意可以设,求其导数可知在上的单调性,由是上的奇函数,可知的奇偶性,进而可知在上的单调性,由可知的零点,最后分类讨论即可.【详解】设,则对,,则在上为单调递增函数,∵函数是上的奇函数,∴,∴,∴偶函数,∴在上为单调递减函数,又∵,∴,由已知得,所以当时,;当时,;当时,;当时,;若,则;若,则或,解得或或;则的解集为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)m值为或.【解析】(1)利用判别式直接求解;(2)用“设而不求法”表示出,即可求出m.【小问1详解】联立,消去y可得.因为直线与椭圆相切,所以,解得:.【小问2详解】设.联立,消去y可得.所以,,所以.又由,可得.所以.因为,所以,解得,所以实数m的值为或.18、(1)(2),【解析】(1)由,计算出公差,再写出通项公式即可.(2)直接用公式写出,配方后求出最小值.【小问1详解】设公差为,由得,从而,即又,【小问2详解】由(1)的结论,,,当时,取得最小值.19、(1)证明见解析,;(2).【解析】(1)由已知条件,可得为常数,从而得证数列是等比数列,进而可得数列的通项公式;(2)由(1)可得,又,所以,所以,利用错位相减法即可求解数列的前项和.【小问1详解】证明:由题意,因为,,,所以,,所以数列是以2为首项,3为公比的等比数列,所以;【小问2详解】解:由(1)可得,又,所以,所以,所以,所以,,所以,所以.20、(1);;(2).【解析】(1)验证可知数列是以为周期的周期数列,则,;(2)由(1)可求得,利用错位相减法可求得结果.【小问1详解】当时,;当时,;当时,;数列是以为周期的周期数列;,;【小问2详解】由(1)得:,,,,两式作差得:.21、(1);(2).【解析】(1)由可得数列是公差为2的等差数列,再由,,成等比数列,列方程可求出,从而可求得数列的通项公式;(2)由(1)可得,然后利用裂项相消求和法可求出【详解】解:(1)由,可得,即数列是公差为2的等差数列.所以,,.由题意得,解得,所以.(2)由(1)可得,所以数列的前项和.22、(1)当时,的单调递增区间为,无单调递减区间;当时,的单调递减区间为,单调递增区间为;(2)时函数没有零点;或时函数有且只有一个零点;时,函数有两个零点.【解析】(1)先对函数求导,然后分和两种情况判断导函数正负,求其单调区间;(2)由,得,构造函数,然后利用导数求出其单调区间和极值,画出此函数的图像,再判断图像与直线的交点情况,从而可得答案【详解】(1)因为,所以,当时,恒成立,所以的单调递增区间为,无单调递减区间;当时,令,得;令,得,所以的单调递减区间为,单调递增区间为.(2)显然0不是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论