2023-2024学年湖北省名师联盟数学高二上期末统考试题含解析_第1页
2023-2024学年湖北省名师联盟数学高二上期末统考试题含解析_第2页
2023-2024学年湖北省名师联盟数学高二上期末统考试题含解析_第3页
2023-2024学年湖北省名师联盟数学高二上期末统考试题含解析_第4页
2023-2024学年湖北省名师联盟数学高二上期末统考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年湖北省名师联盟数学高二上期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛物线的准线方程是,则实数的值为()A. B.C.8 D.2.直线x﹣y+3=0的倾斜角是()A.30° B.45°C.60° D.150°3.若是等差数列的前项和,,则()A.13 B.39C.45 D.214.已知函数,则()A. B.C. D.5.设是公差的等差数列,如果,那么()A. B.C. D.6.函数y=x3+x2-x+1在区间[-2,1]上的最小值为()A. B.2C.-1 D.-47.2019年末,武汉出现新型冠状病毒肺炎(COVID—19)疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人在排查期间,一户6口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为p(0<p<1)且相互独立,该家庭至少检测了5个人才能确定为“感染高危户”的概率为f(p),当p=p0时,f(p)最大,则p0=()A. B.C. D.8.“,”是“方程表示双曲线”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.已知正三棱柱中,,点为中点,则异面直线与所成角的余弦值为()A. B.C. D.10.变量,之间的一组相关数据如表所示:若,之间的线性回归方程为,则的值为()45678.27.86.65.4A. B.C. D.11.九连环是我国从古至今广为流传的一种益智游戏,它由九个铁丝圆环相连成串,按一定规则移动圆环的次数决定解开圆环的个数.在某种玩法中,用表示解开n(,)个圆环所需的最少移动次数,若数列满足,且当时,则解开5个圆环所需的最少移动次数为()A.10 B.16C.21 D.2212.(5分)已知集合A={x|−2<x<4},集合B={x|(x−6)(x+1)<0},则A∩B=A.{x|1<x<4} B.{x|x<4或x>6}C.{x|−2<x<−1} D.{x|−1<x<4}二、填空题:本题共4小题,每小题5分,共20分。13.直线过点,且原点到直线l的距离为,则直线方程是______14.已知直线与双曲线无公共点,则双曲线离心率的取值范围是____15.过点且与直线垂直的直线方程为______16.已知圆锥的高为,体积为,则以该圆锥的母线为半径的球的表面积为______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆心为的圆经过,两点,且圆心在直线上,求此圆的标准方程.18.(12分)已知椭圆的中心在原点,焦点在轴上,离心率等于,它的一个顶点恰好是抛物线的焦点.(1)求椭圆的标准方程;(2)已知直线与椭圆交于、两点,、是椭圆上位于直线两侧的动点,且直线的斜率为,求四边形面积的最大值.19.(12分)如图,点О是正四棱锥的底面中心,四边形PQDO矩形,(1)点B到平面APQ的距离:(2)设E为棱PC上的点,且,若直线DE与平面APQ所成角的正弦值为,试求实数的值20.(12分)已知如图①,在菱形ABCD中,且,为AD的中点,将沿BE折起使,得到如图②所示的四棱锥,在四棱锥中,求解下列问题:(1)求证:BC平面ABE;(2)若P为AC中点,求二面角的余弦值.21.(12分)设函数(1)若曲线在点处的切线方程为,求;(2)求函数的单调区间22.(10分)已知数列满足(1)求数列的通项公式;(2)是否存在正实数a,使得不等式对一切正整数n都成立?若存在,求出a的取值范围;若不存在,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】化简方程为,求得抛物线的准线方程,列出方程,即可求解.【详解】由抛物线,可得,所以,所以抛物线的准线方程为,因为抛物线的准线方程为,所以,解得.故选:B.2、C【解析】先求斜率,再求倾斜角即可【详解】解:直线的斜截式方程为,∴直线的斜率,∴倾斜角,故选:C【点睛】本题主要考查直线的倾斜角与斜率,属于基础题3、B【解析】先根据等差数列的通项公式求出,然后根据等差数列的求和公式及等差数列的下标性质求得答案.【详解】设等差数列的公差为d,则,则.故选:B.4、B【解析】求出,代值计算可得的值.【详解】因为,则,故.故选:B.5、D【解析】由已知可得,即可得解.【详解】由已知可得.故选:D.6、C【解析】详解】,令,解得或;令,解得函数在上递增,在递减,在递增,时,取极大值,极大值是时,函数取极小值,极小值是,而时,时,,故函数的最小值为,故选C.7、A【解析】解设事件A为:检测了5人确定为“感染高危户”,设事件B为:检测了6人确定为“感染高危户”,则,再利用基本不等式法求解.【详解】解:设事件A为:检测了5人确定为“感染高危户”,设事件B为:检测了6人确定为“感染高危户”,则,,所以,令,则,,当且仅当,即时,等号成立,即,故选:A8、A【解析】根据双曲线的方程以及充分条件和必要条件的定义进行判断即可【详解】由,可知方程表示焦点在轴上的双曲线;反之,若表示双曲线,则,即,或,所以“,”是“方程表示双曲线”的充分不必要条件故选:A9、A【解析】根据异面直线所成角的定义,取中点为,则为异面直线和所成角或其补角,再解三角形即可求出【详解】如图所示:设中点为,则在三角形中,为中点,为中位线,所以有,,所以为异面直线和所成角或其补角,在三角形中,,所以由余弦定理有,故选:A.10、C【解析】本题先求样本点中心,再利用线性回归方程过样本点中心直接求解即可.【详解】解:,,所以样本点中心:,线性回归方程过样本点中心,则解得:,故选:C【点睛】本题考查线性回归方程过样本点中心,是简单题.11、D【解析】根据题意,结合数列递推公式,代入计算即可.【详解】根据题意,由,得.故选:D.12、D【解析】由(x−6)(x+1)<0,得−1<x<6,从而有B={x|−1<x<6},所以A∩B={x|−1<x<4},故选D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】直线斜率不存在不满足题意,即设直线的点斜式方程,再利用点到直线的距离公式,求出的值,即可求出直线方程.【详解】①当直线斜率不存在时,显然不满足题意.②当直线斜率存在时,设直线为.原点到直线l的距离为,即直线方程为.故答案为:.14、【解析】联立直线得,由无公共点得,进而得,即可求出离心率的取值范围.【详解】联立直线与双曲线可得,整理得,显然,由方程无解可得,即,则,,又离心率大于1,故离心率的取值范围是.故答案为:.15、【解析】先设出与直线垂直的直线方程,再把代入进行求解.【详解】设与直线垂直的直线为,将代入得:,解得:,故所求直线方程为.故答案为:16、【解析】利用圆锥体积公式可求得圆锥底面半径,利用勾股定理可得母线长;根据球的表面积公式可求得结果.【详解】设圆锥的底面半径为,母线长为,圆锥体积,,,以为半径的球的表面积.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解析】设圆心坐标为,根据两点在圆上利用两点的距离公式建立关于的方程,解出值.从而求出圆的圆心和半径,可得圆的方程【详解】解:∵圆心在直线,∴设圆心坐标为,根据点和在圆上,可得解之得.∴圆心坐标为,半径.因此,此圆的标准方程是18、(1)(2)【解析】(1)根据离心率的定义以及椭圆与抛物线焦点的关系,可以求出椭圆方程;(2)根据题意,可以利用铅锤底水平高的方法求四边形APBQ的面积,即是要利用韦达定理算出.【小问1详解】由题意,即;抛物线,焦点为,故,所以椭圆C的标准方程为:.【小问2详解】由题意作图如下:设AB直线的方程为:,并设点,,联立方程:得:,∴……①,……②,;由于A,B两点在直线PQ的两边(如上图),所以,即,将①②带入得:,解得;即由题意直线PQ的方程为,联立方程解得,,∴;将线段PQ看做铅锤底,A,B两点的横坐标之差看做水平高,得四边形APBQ的面积为:,当且仅当m=0时取最大值,而,所以的最大值为.19、(1)(2)或【解析】(1)以三棱锥等体积法求点到面距离,思路简单快捷.(2)由直线DE与平面APQ所成角的正弦值为,可以列关于的方程,解之即可.【小问1详解】点О是正四棱锥底面中心,点О是BD的中点,四边形PQDO矩形,,两点到平面APQ的距离相等.正四棱锥中,平面,平面,,,设点B到平面APQ的距离为d,则,即解之得,即点B到平面APQ的距离为【小问2详解】取PC中点N,连接BN、ON、DN,则.平面平面正四棱锥中,,直线平面平面,平面平面,平面平面平面中,点E到直线ON的距离即为点E到平面的距离.中,,点P到直线ON的距离为△中,,设点E到平面的距离为d,则有,则则有,整理得,解之得或20、(1)证明见解析;(2)【解析】(1)利用题中所给的条件证明,,因为,所以,,即可证明平面;(2)先证明平面,以为坐标原点,,,的方向分别为轴,轴,轴,建立如图所示的空间直角坐标系,求出平面的一个法向量,平面的一个法向量,利用向量的夹角公式即可求解【详解】(1)在图①中,连接,如图所示:因为四边形为菱形,,所以是等边三角形.因为为的中点,所以,.又,所以.在图②中,,所以,即.因为,所以,.又,,平面.所以平面.(2)由(1)知,,因为,,平面.所以平面.以为坐标原点,,,的方向分别为轴,轴,轴,建立如图所示的空间直角坐标系:则,,,,.因为为的中点,所以.所以,.设平面的一个法向量为,由得.令,得,,所以.设平面的一个法向量为.因为,由得令,,,得则,由图象可知二面角为锐角,所以二面角的余弦值为.21、(1)(2)答案见解析【解析】(1)求出,建立方程关系,即可求出结论;(2)对分类讨论,求出的单调区间.【小问1详解】由于切

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论