版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年广东省深圳市福田区耀华实验学校华文部数学高二上期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数在区间单调递增,则的取值范围是()A. B.C. D.2.已知动圆M与直线y=2相切,且与定圆C:外切,求动圆圆心M的轨迹方程A. B.C. D.3.设平面的法向量为,平面的法向量为,若,则的值为()A.-5 B.-3C.1 D.74.内角、、的对边分别为、、,若,,,则()A. B.C. D.5.设各项均为正项的数列满足,,若,且数列的前项和为,则()A. B.C.5 D.66.已知函数.设命题的定义域为,命题的值域为.若为真,为假,则实数的取值范围是()A. B.C. D.7.下列函数求导错误的是()A.B.C.D.8.已知A(-1,1,2),B(1,0,-1),设D在直线AB上,且,设C(λ,+λ,1+λ),若CD⊥AB,则λ的值为()A. B.-C. D.9.若双曲线一条渐近线被圆所截得的弦长为,则双曲线的离心率是()A. B.C. D.10.如图是函数的导函数的图象,下列结论中正确的是()A.在上是增函数 B.当时,取得最小值C.当时,取得极大值 D.在上是增函数,在上是减函数11.在棱长均为1的平行六面体中,,则()A. B.3C. D.612.已知直线经过抛物线的焦点,且与该抛物线交于,两点,若满足,则直线的方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.将由2,5,8,11,14,…组成的等差数列,按顺序写在练习本上,已知每行写13个,每页有21行,则5555在第______页第______行.(用数字作答)14.等比数列的前n项和,则的通项公式为___________.15.已知圆C:和点,若点N为圆C上一动点,点Q为平面上一点且,则Q点纵坐标的最大值为______16.命题“若实数a,b满足,则且”是_______命题(填“真”或“假”).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四边形是某半圆柱的轴截面(过上下底面圆心连线的截面),线段是该半圆柱的一条母线,点为线的中点(1)证明:;(2)若,且点到平面的距离为1,求线段的长18.(12分)已知等差数列的前项和为,.(1)求数列的通项公式;(2)求的最大值及相应的的值.19.(12分)在直角坐标系中,曲线C的参数方程为,(为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.(1)写出曲线C的极坐标方程;(2)已知直线与曲线C相交于A,B两点,求.20.(12分)已知函数(1)求曲线在点(e,)的切线方程;(2)求函数的单调区间.21.(12分)如图,在四棱锥中,底面为正方形,底面,,为棱的中点.(1)求直线与所成角的余弦值;(2)求直线与平面所成角的正弦值;(3)求二面角的余弦值.22.(10分)已知等差数列满足,,的前项和为.(1)求及;(2)令,求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】函数在区间上单调递增,转化为导函数在该区间上大于等于0恒成立,进而求出结果.【详解】由题意得:在区间上恒成立,而,所以.故选:A2、D【解析】由题意动圆M与直线y=2相切,且与定圆C:外切∴动点M到C(0,-3)的距离与到直线y=3的距离相等由抛物线的定义知,点M的轨迹是以C(0,-3)为焦点,直线y=3为准线的抛物线故所求M的轨迹方程为考点:轨迹方程3、C【解析】根据,可知向量建立方程求解即可.【详解】由题意根据,可知向量,则有,解得.故选:C4、C【解析】利用正弦定理可求得边的长.【详解】由正弦定理得.故选:C.5、D【解析】由利用因式分解可得,即可判断出数列是以为首项,为公差的等差数列,从而得到数列,数列的通项公式,进而求出【详解】等价于,而,所以,即可知数列是以为首项,为公差的等差数列,即有,所以,故故选:D6、C【解析】根据一元二次不等式恒成立和二次函数值域可求得为真命题时的取值范围,根据和的真假性可知一真一假,分类讨论可得结果.【详解】若命题为真,则在上恒成立,,;若命题为真,则的值域包含,则或,;为真,为假,一真一假,若真假,则;若假真,则;综上所述:实数的取值范围为.故选:C.7、C【解析】每一个选项根据求导公式及法则来运算即可判断.【详解】对于A,,正确;对于B,,正确;对于C,,不正确;对于D,,正确.故选:C8、B【解析】设D(x,y,z),根据求出D(,,0),再根据CD⊥AB得·=2(-λ)+λ-3(-1-λ)=0,解方程即得λ的值.【详解】设D(x,y,z),则=(x+1,y-1,z-2),=(2,-1,-3),=(1-x,-y,-1-z),∵=2,∴∴∴D(,,0),=(-λ,-λ,-1-λ),∵⊥,∴·=2(-λ)+λ-3(-1-λ)=0,∴λ=-故选:B【点睛】(1)本题主要考查向量的线性运算和空间向量垂直的坐标表示,意在考查学生对这些知识的掌握水平和分析推理能力.(2).9、A【解析】根据(为弦长,为圆半径,为圆心到直线的距离),求解出的关系式,结合求解出离心率的值.【详解】取的一条渐近线,因为(为弦长,为圆半径,为圆心到直线的距离),其中,所以,所以,所以,所以,所以,故选:A.【点睛】关键点点睛:解答本题的关键是利用几何法表示出圆的半径、圆心到直线的距离、半弦长之间的关系.10、D【解析】根据导函数的图象判断出函数的单调区间、极值、最值,由此确定正确选项.【详解】根据图象知:当,时,函数单调递减;当,时,函数单调递增.所以在上单调递减,在上单调递增,在上单调递减,在上单调递增,故选项A不正确,选项D正确;故当时,取得极小值,选项C不正确;当时,不是取得最小值,选项B不正确;故选:D.11、C【解析】设,,,利用结合数量积的运算即可得到答案.【详解】设,,,由已知,得,,,,所以,所以.故选:C12、C【解析】求出抛物线的焦点,设出直线方程,代入抛物线方程,运用韦达定理和向量坐标表示,解得,即可得出直线的方程.【详解】解:抛物线的焦点,设直线为,则,整理得,则,.由可得,代入上式即可得,所以,整理得:.故选:C.【点睛】本题考查直线和抛物线的位置关系,主要考查韦达定理和向量共线的坐标表示,考查运算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、①.7②.17【解析】首先求出等差数列的通项公式,即可得到为第项,再根据每行每页的项数计算可得;【详解】解:由2,5,8,11,14,…组成的等差数列的通项公式为,令,解得又,,.所以555在第7页第17行故答案为:;14、【解析】利用的关系,结合是等比数列,即可求得结果.【详解】因为,故当时,,则,又当时,,因为是等比数列,故也满足,即,故,此时满足,则.故答案为:.15、【解析】设出点N的坐标,探求出点Q的轨迹,再求出轨迹上在x轴上方且距离x轴最远的点的纵坐标表达式,借助函数最值计算作答.【详解】圆C:的圆心,半径,圆C与x轴相切,依题意,点M在圆C上,设点,则,线段MN中点,因,则点Q的轨迹是以线段MN为直径的圆(除点M,N外),这个轨迹在x轴上方,于是得这个轨迹上的点到x轴的最大距离为:令,于是得,当,即时,,所以Q点纵坐标的最大值为.故答案为:【点睛】结论点睛:圆上的点到定直线距离的最大值等于圆心到该直线距离加半径.16、假【解析】列举特殊值,判断真假命题.【详解】当时,,所以,命题“若实数a,b满足,则且”是假命题.故答案为:假三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)先证明,,利用判定定理证明平面,从而得到;(2)设,利用等体积法,由由,解出a.【详解】(1)证明:由题意可知平面,平面∴∵所对为半圆直径∴∴和是平面内两条相交直线∴平面平面∴(2)设,因为,且所以,设,在等腰直角三角形中,取BC的中点E,连结AE,则,取BC1的中点为P,连结DP,∵,∴,又为的中点,∴,∴,即的高为∴,∵,且∴平面,∵平面,且即到平面的距离为1,而由,即解得:,即.【点睛】立体几何解答题(1)第一问一般是几何关系的证明,用判定定理;(2)第二问是计算,求角或求距离(求体积通常需要先求距离).如果求体积,常用的方法有:(1)直接法;(2)等体积法;(3)补形法;(4)向量法.18、(1)(2)当或时,有最大值是20【解析】(1)用等差数列的通项公式即可.(2)用等差数列的求和公式即可.【小问1详解】在等差数列中,∵,∴,解得,∴;【小问2详解】∵,∴,∴当或时,有最大值是2019、(1);(2).【解析】(1)首先将圆的参数方程华为普通方程,再转化为极坐标方程即可.(2)首先联立得到,再求的长度即可.【详解】(1)将曲线C的参数方程,(为参数)化为普通方程,得,极坐标方程为.(2)联立方程组,消去得,设点A,B对应的极径分别为,,则,,所以.20、(1);(2)在单调递减,在单调递增【解析】(1)求出函数的导数,求出切线的斜率,切点坐标,然后求解切线方程;(2)利用导函数的符号,判断函数的单调性,求解函数的单调区间即可【详解】解:(1)由得,所以切线斜率为切点坐标为,所以切线方程为,即;(2),令,得当时,;当时,,∴在单调递减,在单调递增21、(1);(2);(3).【解析】以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,设.(1)写出、的坐标,利用空间向量法计算出直线与所成角的余弦值;(2)求出平面的一个法向量的坐标,利用空间向量法可计算得出直线与平面所成角的正弦值;(3)求出平面的一个法向量的坐标,利用空间向量法可求得二面角的余弦值.【详解】平面,四边形为正方形,设.以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,如下图所示:则、、、、、.(1),,,所以,异面直线、所成角的余弦值为;(2)设平面的一个法向量为,,,由,可得,取,可得,则,,,因此,直线与平面所成角的正弦值为;(3)设平面的一个法向量为,,,由,可得,得,取,则,,所以,平面的一个法向量为,,由图形可知,二面角为锐角,因此,二面角的余弦值为.【点睛】方法点睛:求空间角的常用方法:(1)定义法:由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应的三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量的夹角(两直线的方向向量、直线的方向向量与平面的法向量、两平面的法向量)的余弦值,即可求得结果.22、(1),;(2).【解析】(1)根据等差数列的通项
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 箱包产品代理协议
- 能源设施安装验收合同模板
- 寒假教师培训方案
- 电子商务代理销售合同
- 医院检验科门诊工作制度
- 儿童玩具买卖及赠品合同
- 养老机构形象塑造协议
- 房地产贷款服务合同
- 2024至2030年中国电动勃氏透气比表面积仪行业投资前景及策略咨询研究报告
- 2024幼儿园安全隐患大排查大整治专项行动实施方案
- 工作室加盟合作合同
- 《国有企业管理人员处分条例》学习解读课件
- 大量收购青苗姜合同
- 2024年中国建筑科学研究院限公司校园招聘【重点基础提升】模拟试题(共500题)附带答案详解
- 2024年农业农村知识考试必背复习题库(浓缩500题)
- 数字资源管理规章制度
- 缺血性脑卒中全流程规范化管理
- 医院培训课件:《PPD试验》
- 家长会课件:小学三年级家长会 课件
- 文创产品设计方案(2篇)
- 2024年广东中山市检察机关劳动合同制司法辅助人员招聘笔试参考题库附带答案详解
评论
0/150
提交评论