版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年海南省海口市华侨中学高二数学第一学期期末复习检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,则在上的投影向量为()A.1 B.C. D.2.已知点是椭圆方程上的动点,、是直线上的两个动点,且满足,则()A.存在实数使为等腰直角三角形的点仅有一个B.存在实数使为等腰直角三角形的点仅有两个C.存在实数使为等腰直角三角形的点仅有三个D.存在实数使为等腰直角三角形的点有无数个3.如果,那么下面一定成立的是()A. B.C. D.4.已知是等差数列,,,则公差为()A.6 B.C. D.25.若函数,满足且,则()A.1 B.2C.3 D.46.围棋起源于中国,据先秦典籍世本记载:“尧造围棋,丹朱善之”,至今已有四千多年历史.围棋不仅能抒发意境、陶冶情操、修身养性、生慧增智,而且还与天象易理、兵法策略、治国安邦等相关联,蕴含着中华文化的丰富内涵.在某次国际围棋比赛中,规定甲与乙对阵,丙与丁对阵,两场比赛的胜者争夺冠军,根据以往战绩,他们之间相互获胜的概率如下:甲乙丙丁甲获胜概率乙获胜概率丙获胜概率丁获胜概率则甲最终获得冠军的概率是()A.0.165 B.0.24C.0.275 D.0.367.在数列中,,则等于A. B.C. D.8.在公比为的等比数列中,前项和,则()A.1 B.2C.3 D.49.如图,在棱长为2的正方体中,点P在截面上(含边界),则线段的最小值等于()A. B.C. D.10.如图是正方体的平面展开图,在这个正方体中①与平行;②与是异面直线;③与成60°角;④与是异面直线以上四个结论中,正确结论的序号是A.①②③ B.②④C.③④ D.②③④11.如图,,是平面上两点,且,图中的一系列圆是圆心分别为,的两组同心圆,每组同心圆的半径分别是1,2,3,…,A,B,C,D,E是图中两组同心圆的部分公共点.若点A在以,为焦点的椭圆M上,则()A.点B和C都在椭圆M上 B.点C和D都在椭圆M上C.点D和E都在椭圆M上 D.点E和B都在椭圆M上12.若在直线上,则直线的一个方向向量为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知方程,若此方程表示椭圆,则实数的取值范围是________;若此方程表示双曲线,则实数的取值范围是________.14.已知双曲线-=1(a>0,b>0)与抛物线y2=8x有一个共同的焦点F,两曲线的一个交点为P,若|FP|=5,则点F到双曲线的渐近线的距离为_____.15.如图,在长方体中,,,则直线与平面所成角的正弦值为__________.16.如图,在四面体中,BA,BC,BD两两垂直,,,则二面角的大小为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)圆锥曲线的方程是.(1)若表示焦点在轴上的椭圆,求的取值范围;(2)若表示焦点在轴上且焦距为的双曲线,求的值.18.(12分)如图,正三棱柱中,D是的中点,.(1)求点C到平面的距离;(2)试判断与平面的位置关系,并证明你的结论.19.(12分)已知函数(1)解不等式;(2)若不等式对恒成立,求实数m的取值范围20.(12分)已知椭圆的左、右焦点分别为,离心率为,圆:过椭圆的三个顶点,过点的直线(斜率存在且不为0)与椭圆交于两点(1)求椭圆的标准方程(2)证明:在轴上存在定点,使得为定值,并求出定点的坐标21.(12分)已知数列为各项均为正数的等比数列,若(1)求数列的通项公式;(2)求数列的前n项和22.(10分)已知双曲线C:(,)的一条渐近线的方程为,双曲线C的右焦点为,双曲线C的左、右顶点分别为A,B(1)求双曲线C的方程;(2)过右焦点F的直线l与双曲线C的右支交于P,Q两点(点P在x轴的上方),直线AP的斜率为,直线BQ的斜率为,证明:为定值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据题意得,进而根据投影向量的概念求解即可.【详解】解:因为,,所以,所以,所以在上的投影向量为故选:C2、B【解析】求出点到直线的距离的取值范围,对点是否为直角顶点进行分类讨论,确定、的等量关系,综合可得出结论.【详解】设点,则点到直线的距离为.因为椭圆与直线均关于原点对称,①若为直角顶点,则.当时,此时,不可能是等腰直角三角形;当时,此时,满足是等腰直角三角形的直角顶点有两个;当时,此时,满足是等腰直角三角形的直角顶点有四个;②若不是直角顶点,则.当时,满足是等腰直角三角形的非直角顶点不存在;当时,满足是等腰直角三角形的非直角顶点有两个;当时,满足是等腰直角三角形非直角顶点有四个.综上所述,当时,满足是等腰直角三角形的点有八个;当时,满足是等腰直角三角形的点有六个;当时,满足是等腰直角三角形的点有四个;当时,满足是等腰直角三角形的点有两个;当时,满足是等腰直角三角形的点不存在.故选:B.3、C【解析】根据不等式的基本性质,以及特例法和作差比较法,逐项计算,即可求解.【详解】对于A中,当时,,所以不正确;对于B中,因为,根据不等式的性质,可得,对于C中,由,可得可得,所以,所以正确;对于D中,由,可得,则,所以,所以不正确.故选:C.4、C【解析】设的首项为,把已知的两式相减即得解.【详解】解:设的首项为,根据题意得,两式相减得.故选:C5、C【解析】先取,得与之间的关系,然后根据导数的运算直接求导,代值可得.【详解】取,则有,即,又因为所以,所以,所以.故选:C6、B【解析】先求出甲第一轮胜出的概率,再求出甲第二轮胜出的概率,即可得出结果.【详解】甲最终获得冠军的概率,故选:B.7、D【解析】分析:已知逐一求解详解:已知逐一求解.故选D点睛:对于含有的数列,我们看作摆动数列,往往逐一列举出来观察前面有限项的规律8、C【解析】先利用和的关系求出和,再求其公比.【详解】由,得,,所以,,则.故选:C.9、B【解析】根据体积法求得到平面的距离即可得【详解】由题意的最小值就是到平面的距离正方体棱长为2,则,,设到平面的距离为,由得,解得故选:B10、C【解析】根据平面展开图可得原正方体,根据各点的分布逐项判断可得正确的选项.【详解】由平面展开图可得原正方体如图所示:由图可得:为异面直线,与不是异面直线,是异面直线,故①②错误,④正确.连接,则为等边三角形,而,故或其补角为与所成的角,因为,故与所成的角为,故③正确.综上,正确命题的序号为:③④.故选:C.【点睛】本题考查正方体的平面展开图,注意展开图中的点与正方体中的顶点的对应关系,本题属于容易题.11、C【解析】根据椭圆的定义判断即可求解.【详解】因为,所以椭圆M中,因为,,,,所以D,E在椭圆M上.故选:C12、D【解析】由题意可得首先求出直线上的一个向量,即可得到它的一个方向向量,再利用平面向量共线(平行)的坐标表示即可得出答案【详解】∵在直线上,∴直线的一个方向向量,又∵,∴是直线的一个方向向量故选:D二、填空题:本题共4小题,每小题5分,共20分。13、①.②.【解析】分别根据椭圆、双曲线的标准方程的特征建立不等式即可求解.【详解】当方程表示椭圆时,则有且,所以的取值范围是;当方程表示双曲线时,则有或,所以的取值范围是.故答案为:;14、【解析】设点为,由抛物线定义知,,求出点P坐标代入双曲线方程得到的关系式,求出双曲线的渐近线方程,利用点到直线的距离公式求解即可.【详解】由题意得F(2,0),因为点P在抛物线y2=8x上,|FP|=5,设点为,由抛物线定义知,,解得,不妨取P(3,2),代入双曲线-=1,得-=1,又因为a2+b2=4,解得a=1,b=,因为双曲线的渐近线方程为,所以双曲线的渐近线为y=±x,由点到直线的距离公式可得,点F到双曲线的渐近线的距离.故答案为:【点睛】本题考查双曲线和抛物线方程及其几何性质;考查运算求解能力和知识迁移能力;灵活运用双曲线和抛物线的性质是求解本题的关键;属于中档题、常考题型.15、##【解析】过作,垂足为,则平面,则即为所求角,从而可得结果.【详解】依题意,画出图形,如图,过作,垂足为,可知点H为中点,由平面,可得,又所以平面,则即为所求角,因为,,所以,故答案为:.16、【解析】取的中点为,连接,由面面角的定义得出二面角的平面角为,再结合等腰直角三角形的性质得出二面角的大小.【详解】取的中点为,连接,因为,所以二面角的平面角为,因为,,所以为等腰直角三角形,即二面角的大小为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)且(2)【解析】(1)由条件可得,解出即可;(2)由条件可得,解出即可.【小问1详解】若表示焦点在轴上椭圆,则,解得且【小问2详解】若表示焦点在轴上且焦距为的双曲线,则,解得18、(1)(2)平行,证明过程见解析.【解析】(1)利用等体积法即可求解;(2)利用线面平行判定即可求解.【小问1详解】解:正三棱柱中,D是的中点,所以,,正三棱柱中,所以又因为正三棱柱中,侧面平面且交线为且平面中,所以平面又平面所以设点C到平面的距离为在三棱锥中,即所以点C到平面的距离为.【小问2详解】与平面的位置,证明如下:连接交于点,连接,如下图所示,因为正三棱柱的侧面为矩形所以为的中点又因为为中点所以为的中位线所以又因为平面,且平面所以平面19、(1)(2)【解析】(1)移项,两边平方即可获解;(2)利用绝对值不等式即可.【小问1详解】即即,即即即或所以不等式的解集为【小问2详解】由题知对恒成立因为.所以,解得即或,所以实数的取值范为20、(1);(2)见解析,定点【解析】(1)先判断圆经过椭圆的上、下顶点和右顶点,令圆方程中的,得,即.再由求即可.(2)设在轴上存在定点,使得为定值,根据题意,设直线的方程为,联立可得,再运算将韦达定理代入化简有与k无关即可.【详解】(1)由圆方程中的时,的两根不为相反数,故可设圆经过椭圆的上、下顶点和右顶点,令圆方程中的,得,即有又,解得∴椭圆的标准方程为(2)证明:设在轴上存在定点,使得为定值,由(1)可得,设直线的方程为,联立可得,设,则,,要使为定值,只需,解得∴在轴上存在定点,使得为定值,定点的坐标为【点睛】本题主要考查椭圆的几何性质和直线与椭圆的位置关系,还考查了数形结合的思想和运算求解的能力,属于中档题.21、(1)(2)【解析】(1)利用等比数列通项公式列出方程组,可求解,,从而写出;(2)化简数列,裂项相消法求和即可.【小问1详解】设数列的公比为,∵,∴,即①∵,∴②②÷①,解得∴∴【小问2详解】∵,∴∴∴22、(1);(2)证明见解析.【解析】(1)由题可得,,即求;(2)由题可设直线方程与双曲线方程联立,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国药品纸箱数据监测研究报告
- 2024年瓜尔胶项目成效分析报告
- 2024至2030年中国隔断墙数据监测研究报告
- 2024年碲酸项目评价分析报告
- 2024年热熔胶机项目评估分析报告
- 2024至2030年中国花鳖苗种行业投资前景及策略咨询研究报告
- 2024至2030年中国纺织瓷数据监测研究报告
- 2024至2030年中国汽车空调冷媒导管数据监测研究报告
- 2024至2030年中国数显式风淋室控制器数据监测研究报告
- 2024至2030年中国彩色铁锁行业投资前景及策略咨询研究报告
- 军事理论考试卷
- 40万豪华装修清单
- 浅谈新课标下的小学英语课堂教学
- 江苏省住宅物业委托服务合同(示范文本)
- 新产品风险分析报告
- 网络安全教育ppt课件(图文)
- PMUT器件及其制备方法
- 热电阻培训课件
- 1-成人学习的特点教学课件
- 2023贵州省开阳县事业单位招聘对象及高频考点题库(共500题含答案解析)模拟练习试卷
- 大学生职业生涯规划PPT完整全套教学课件
评论
0/150
提交评论