4G和LTE技术资料综述_第1页
4G和LTE技术资料综述_第2页
4G和LTE技术资料综述_第3页
4G和LTE技术资料综述_第4页
4G和LTE技术资料综述_第5页
已阅读5页,还剩259页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

4G和LTE技术资料第第页4G和LTE技术资料

目录什么是4G和LTE?与以往的技术有什么区别 2TD-LTE和FDD-LTE技术简介,全球发展概况 4什么是OFDM?基本原理和应用 9OFDM与CDMA等技术比较 13LTE关键技术之OFDM和MIMO 19为什么OFDM系统比CDMA系统更容易与MIMO技术结合? 303GPP系统架构演进(SAE) 32LTE系统结构 33LTE系统接口协议 36LTE空中接口信道和映射关系 44LTE空中接口的分层结构 50外一篇:LTE和FDD

LTE的工作频段 52MAC

媒体接入控制层 53RLC

无线链路控制层 64PDCP

分组数据汇聚层 74LTE物理层概述 83LTE系统物理层基本过程 89LTE下行功率控制 99LTE上行功率控制 103小区间干扰抑制技术 110波束赋形天线技术 112小区间干扰消除、协调、随机化技术 113LTE移动性管理相关概念 119LTE小区选择/重选 122LTE小区切换 129S1接口切换相关信令 141UU接口切换相关信令 145LTE切换流程分析 147第十三课:LTE无线资源管理 153上行物理信道处理流程 161下行物理信道处理流程 167传输信道复用 174第十五课:3GPP核心网演进 181LTE网络规划的目标与流程 205LTE频率规划 210

什么是4G和LTE?与以往的技术有什么区别认识4G要学习4G,就要知道什么是4G,4G就是第四代移动通信系统。第四代移动通信系统可称为广带接入和分布式网络,其网络结构将是一个采用全IP的网络结构。4G网络采用许多关键技术来支撑,包括:正交频率复用技术(OrthogonalFrequencyDivisionMultiplexing,OFDM),多载波调制技术,自适应调制和编码(AdaptiveModulationandCoding,AMC)技术,MIMO和智能天线技术,基于IP的核心网,软件无线电技术以及网络优化和安全性等。另外,为了与传统的网络互联需要用网关建立网络的互联,所以4G将是一个复杂的多协议网络。第四代移动通信系统具有如下特征:◆传输速率更快:对于大范围高速移动用户(250km/h)数据速率为2Mbps;对于中速移动用户(60km/h)数据速率为20Mbps;对于低速移动用户(室内或步行者),数据速率为100Mbps;◆频谱利用效率更高:4G在开发和研制过程中使用和引入许多功能强大的突破性技术,无线频谱的利用比第二代和第三代系统有效得多,而且速度相当快,下载速率可达到5Mbps~10Mbps;◆网络频谱更宽:每个4G信道将会占用100MHz或是更多的带宽,而3G网络的带宽则在5~20MHz之间;◆容量更大:4G将采用新的网络技术(如空分多址技术等)来极大地提高系统容量,以满足未来大信息量的需求;◆灵活性更强:4G系统采用智能技术,可自适应地进行资源分配,采用智能信号处理技术对信道条件不同的各种复杂环境进行信号的正常收发。另外,用户将使用各式各样的设备接入到4G系统;◆实现更高质量的多媒体通信:4G网络的无线多媒体通信服务将包括语音、数据、影像等,大量信息透过宽频信道传送出去,让用户可以在任何时间、任何地点接入到系统中,因此4G也是一种实时的宽带的以及无缝覆盖的多媒体移动通信;◆兼容性更平滑:4G系统应具备全球漫游,接口开放,能跟多种网络互联,终端多样化以及能从第二代平稳过渡等特点;LTE:LongTermEvolution--3GPP长期演进

3GPP长期演进(LTE:LongTermEvolution)项目是近两年来3GPP启动的最大的新技术研发项目,这种以OFDM/FDMA为核心的技术可以被看作“准4G”技术或3.9G。3GPPLTE项目的主要性能目标包括:在20MHz频谱带宽能够提供下行100Mbps、上行50Mbps的峰值速率;改善小区边缘用户的性能;提高小区容量;降低系统延迟,用户平面内部单向传输时延低于5ms,控制平面从睡眠状态到激活状态迁移时间低于50ms,从驻留状态到激活状态的迁移时间小于100ms;支持100Km半径的小区覆盖;能够为350Km/h高速移动用户提供>100kbps的接入服务;支持成对或非成对频谱,并可灵活配置1.25MHz到20MHz多种带宽。LTE(LongTermEvolution)是新一代宽带无线移动通信技术。与3G采用的CDMA技术不同,LTE以OFDM(正交频分多址)和MIMO(多输入多输出天线)技术为基础,频谱效率是3G增强技术的2~3倍。LTE包括FDD和TDD两种制式。LTE的增强技术(LTE-Advanced)是国际电联认可的第四代移动通信标准。正因为LTE技术的整体设计都非常适合承载移动互联网业务,因此运营商都非常关注LTE,并已成为全球运营商网络演进的主流技术。LTE的频段FDD-LTE主流频段为1.8G/2.6G/及低频段700MHz、800MHz。TD-LTE主流频段为2.6G/2.3GHz。中国政府宣布将2500-2690Mhz共190Mhz的频谱资源全部划分给TDD,极大地提振全球产业和市场对TD-LTE发展的信心,但700Mhz频段在广播电视模拟信号中使用,广电已明确表示不可能出让。LTE与以往移动通信系统的速率对比无线蜂窝制式GSM(EDGE)CDMA2000(1x)下行速率236kbps153kbps上行速率118kbps153kbps无线蜂窝制式CDMA2000(EVDORA)TD-SCDMA(HSPA)WCDMA(HSPA)下行速率3.1Mbps2.8Mbps14.4Mbps上行速率1.8Mbps2.2Mbps5.76Mbps无线蜂窝制式TD-LTEFDD-LTE下行速率100Mbps150Mbps上行速率50Mbps40MbpsTD-LTE和FDD-LTE技术简介,全球发展概况2013-06-05移动通信网TDD-LTE与FDD-LTE的介绍与区别分别是4G两种不同的制式,一个是时分一个是频分,简单来说,TDD-LTE上下行在同一个频点的时隙分配;FDD-LTE上下行通过不同的频点区分。TDD(TimeDivisionDuplexing)时分双工技术,在移动通信技术使用的双工技术之一,与FDD相对应。在TDD模式的移动通信系统中,基站到移动台之间的上行和下行通信使用同一频率信道(即载波)的不同时隙,用时间来分离接收和传送信道,某个时间段由基站发送信号给移动台,另外的时间由移动台发送信号给基站。基站和移动台之间必须协同一致才能顺利工作。

TD-LTE上行理论速率为50Mbps,下行理论速率为100Mbps.FDD模式的特点是在分离的两个对称频率信道上,进行接收和传送,用保证频段来分离接收和传送信道。LTE系统中上下行频率间隔可以达到190MHz。FDD(频分双工)是该技术支援的两种双工模式之一,应用FDD(频分双工)式的LTE即为FDD-LTE。由于无线技术的差异、使用频段的不同以及各个厂家的利益等因素,FDD-LTE的标准化与产业发展都领先于TDD-LTE。FDD-LTE已成为当前世界上采用的国家及地区最广泛的,终端种类最丰富的一种4G标准。FDD-LTE上行理论速率为40Mbps,下行理论速率为150Mbps.FDD与TDD工作原理

频分双工(FDD)和时分双工(TDD)是两种不同的双工方式。如图1所示,FDD是在分离的两个对称频率信道上进行接收和发送,用保护频段来分离接收和发送信道。FDD必须采用成对的频率,依靠频率来区分上下行链路,其单方向的资源在时间上是连续的。FDD在支持对称业务时,能充分利用上下行的频谱,但在支持非对称业务时,频谱利用率将大大降低。

TDD用时间来分离接收和发送信道。在TDD方式的移动通信系统中,接收和发送使用同一频率载波的不同时隙作为信道的承载,其单方向的资源在时间上是不连续的,时间资源在两个方向上进行了分配。某个时间段由基站发送信号给移动台,另外的时间由移动台发送信号给基站,基站和移动台之间必须协同一致才能顺利工作。图:FDD和TDD的工作原理TDD双工方式的工作特点使TDD具有如下优势:(1)能够灵活配置频率,使用FDD系统不易使用的零散频段;

(2)可以通过调整上下行时隙转换点,提高下行时隙比例,能够很好的支持非对称业务;

(3)具有上下行信道一致性,基站的接收和发送可以共用部分射频单元,降低了设备成本;

(4)接收上下行数据时,不需要收发隔离器,只需要一个开关即可,降低了设备的复杂度;

(5)具有上下行信道互惠性,能够更好的采用传输预处理技术,如预RAKE技术、联合传输(JT)技术、智能天线技术等,能有效地降低移动终端的处理复杂性。但是,TDD双工方式相较于FDD,也存在明显的不足:(1)由于TDD方式的时间资源分别分给了上行和下行,因此TDD方式的发射时间大约只有FDD的一半,如果TDD要发送和FDD同样多的数据,就要增大TDD的发送功率;

(2)TDD系统上行受限,因此TDD基站的覆盖范围明显小于FDD基站;

(3)TDD系统收发信道同频,无法进行干扰隔离,系统内和系统间存在干扰;

(4)为了避免与其他无线系统之间的干扰,TDD需要预留较大的保护带,影响了整体频谱利用效率。使用TDD和FDD技术在LTE应用上的优劣

(1)使用TDD技术时,只要基站和移动台之间的上下行时间间隔不大,小于信道相干时间,就可以比较简单的根据对方的信号估计信道特征。而对于一般的FDD技术,一般的上下行频率间隔远远大于信道相干带宽,几乎无法利用上行信号估计下行,也无法用下行信号估计上行;这一特点使得TDD方式的移动通信体制在功率控制以及智能天线技术的使用方面有明显的优势。但也是因为这一点,TDD系统的覆盖范围半径要小,由于上下行时间间隔的缘故,基站覆盖半径明显小于FDD基站。否则,小区边缘的用户信号到达基站时会不能同步。(2)TDD技术可以灵活的设置上行和下行转换时刻,用于实现不对称的上行和下行业务带宽,有利于实现明显上下行不对称的互联网业务。但是,这种转换时刻的设置必须与相邻基站协同进行。(3)与FDD相比,TDD可以使用零碎的频段,因为上下行由时间区别,不必要求带宽对称的频段。(4)TDD技术不需要收发隔离器,只需要一个开关即可。(5)移动台移动速度受限制。在高速移动时,多普勒效应会导致快衰落,速度越高,衰落变换频率越高,衰落深度越深,因此必须要求移动速度不能太高。例如在使用了TDD的TD-SCDMA系统中,在目前芯片处理速度和算法的基础上,当数据率为144kb/s时,TDD的最大移动速度可达250km/h,与FDD系统相比,还有一定差距。一般TDD移动台的移动速度只能达到FDD移动台的一半甚至更低。(6)发射功率受限。如果TDD要发送和FDD同样多的数据,但是发射时间只有FDD的大约一半,这要求TDD的发送功率要大。当然同时也需要更加复杂的网络规划和优化技术。

TD-LTE和FDD-LTE在全球的发展概况频分双工(FrequencyDivisionDuplexing,FDD)和时分双工(TimeDivisionDuplexing,TDD)两种方式,但由于无线技术的差异、使用频段的不同以及各个厂家的利益等因素,LTEFDD支持阵营更加强大,标准化与产业发展都领先于LTETDD。截至2013年3月份,全球125个国家共计412个运营商投资建设LTE网络。67个国家的156个电信运营商已商用LTE网络。其中商用的TDD网络共有14个。截至2013年3月份,全球已商用的FDDLTE网络为149个。其中主流频段为1.8G/2.6G/及低频段700MHz、800MHz。到2013年3月,全球共有14个TD-LTE商用网络。其中主流频段为2.6G/2.3GHz。截至2013年3月份,全球97个厂家共发布了821款LTE终端产品,比去年同期增长54%,其中智能手机增长速率最快,是去年同期的4倍,现已有261款。TDD模式的终端共166款。目前,LTE用户发展较好的主要为美日韩运营商,其初期组网带宽基本为20MHz或10MHz。什么是OFDM?基本原理和应用2013-06-06移动通信网OFDM(OrthogonalFrequencyDivisionMultiplexing)即正交频分复用技术,实际上OFDM是MCMMulti-CarrierModulation,多载波调制的一种。其主要思想是:将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到在每个子信道上进行传输。正交信号可以通过在接收端采用相关技术来分开,这样可以减少子信道之间的相互干扰ICI。每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道上的可以看成平坦性衰落,从而可以消除符号间干扰。而且由于每个子信道的带宽仅仅是原信道带宽的一小部分,信道均衡变得相对容易。以下一段节选自MSCBSC论坛会员bbgoal的《白话LTE关键技术》,对OFDM的描述非常通俗易懂:OFDM这个技术说的很玄乎,其实在WIMAX和WIFI里早就利用了,我以前就说过OFDM并不比CDMA的频谱利用率更高,但是他的优势是大宽带的支持更简单更合理,而且配合mimo更好。举个例子,CDMA是一个班级,又说中文又说英文,如果大家音量控制的好的话,虽然是一个频率但是可以达到互不干扰,所以1.25m的带宽可以实现4.9m的速率。而OFDMA则可以想象成上海的高架桥,10米宽的路,上面架设一个5米宽的高架,实际上道路的通行面积就是15米,这样虽然我水平路面不增加但是可以通行的车辆增加了。而OFDM也是利用这个技术,利用傅里叶快速变换导入正交序列,相当于在有限的带宽里架设了N个高架桥,目前是一个ofdm信号的前半个频率和上一个频点的信号复用,后半个频率和后一个频点的信号复用。那信号频率重叠了怎么区分,很简单,OFDM,O就是正交的意思,正交就是能保证唯一性,举例子,A和B重叠,但是A*a+B*b,a和b是不同的正交序列,如果我要从同一个频率中只获取A,那么通过计算,(A*a+B*b)*a=A*a*a+B*b*a=A+0=A(因为正交,a*a=1,a*b=0)。所以OFDMA是允许频率重叠的,甚至理论上可以重叠到无限,但是为了增加解调的容易性,目前LTE支持OFDM重叠波长的一半。正交频分复用技术,多载波调制的一种。将一个宽频信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到每个子信道上进行传输。在传统FDM系统中,为了避免各子载波间的干扰,相邻载波之间需要较大的保护频带,频谱效率较低。OFDM系统允许各子载波之间紧密相临,甚至部分重合,通过正交复用方式避免频率间干扰,降低了保护间隔的要求,从而实现很高的频率效率。什么是正交?正交频分复用技术,频分复用大家都熟悉,但什么是正交呢?以下来自论坛会员Libin的投稿:多载波技术:多载波技术就是在原来的频带上划分更多的子载波,有人会提出载波划得太细会产生干扰,为了避免这种干扰,两个子载波采用正交,每两个子载波是正交关系避免干扰。这就像双绞线一样。这样一是避免了2个子载波间的干扰,在下一个子载波间也有了一定的间隔距离。解释下什么是正交就是两个波形正好差半个周期。多个窄带子载波,并使其相耳珊交,任一个子载波都可以单独或成组地传输独立的信息流;OFDMA技术则利用有效带宽的细分在多用户间共享子载波。多载波的有点有以下几个方面

1)可以在不改变系统基本参数或设备设计的情况下使用不同的频谱带宽。频谱利用率高。就是一个能当两个用

2)可变带宽的传输资源可以在频域内自由调度,分配给不同的用户。

3)为软频率复用和小区间的干扰协调提供便利。OFDM技术的发展OFDM这种技术是HPA联盟(HomePlugPowerlineAlliance)工业规范的基础,它采用一种不连续的多音调技术,将被称为载波的不同频率中的大量信号合并成单一的信号,从而完成信号传送。由于这种技术具有在杂波干扰下传送信号的能力,因此常常会被利用在容易受外界干扰或者抵抗外界干扰能力较差的传输介质中。其实,OFDM并不是如今发展起来的新技术,OFDM技术的应用已有近40年的历史,主要用于军用的无线高频通信系统。但是,一个OFDM系统的结构非常复杂,从而限制了其进一步推广。直到上世纪70年代,人们采用离散傅立叶变换来实现多个载波的调制,简化了系统结构,使得OFDM技术更趋于实用化。80年代,人们研究如何将OFDM技术应用于高速MODEM。进入90年代以来,OFDM技术的研究深入到无线调频信道上的宽带数据传输。目前OFDM技术已经被广泛应用于广播式的音频、视频领域和民用通信系统,主要的应用包括:非对称的数字用户环路(ADSL)、ETSI标准的数字音频广播(DAB)、数字视频广播(DVB)、高清晰度电视(HDTV)、无线局域网(WLAN)等。在向B3G/4G演进的过程中,OFDM是关键的技术之一,可以结合分集,时空编码,干扰和信道间干扰抑制以及智能天线技术,最大限度的提高了系统性能。包括以下类型:V-OFDM,W-OFDM,F-OFDM,MIMO-OFDM,多带-OFDM。OFDM中的各个载波是相互正交的,每个载波在一个符号时间内有整数个载波周期,每个载波的频谱零点和相邻载波的零点重叠,这样便减小了载波间的干扰。由于载波间有部分重叠,所以它比传统的FDMA提高了频带利用率。在OFDM传播过程中,高速信息数据流通过串并变换,分配到速率相对较低的若干子信道中传输,每个子信道中的符号周期相对增加,这样可减少因无线信道多径时延扩展所产生的时间弥散性对系统造成的码间干扰。另外,由于引入保护间隔,在保护间隔大于最大多径时延扩展的情况下,可以最大限度地消除多径带来的符号间干扰。如果用循环前缀作为保护间隔,还可避免多径带来的信道间干扰。(本文部分内容来自MSCBSC论坛会员bbgoal在论坛的帖子《白话LTE关键技术》和会员libin的投稿,感谢他们的贡献,希望广大C友积极投稿,投稿其实也是深度学习的一种途径,投稿信箱:luntan@)OFDM与CDMA等技术比较2013-06-06移动通信网说到OFDM技术,一般都会提及到CDMA技术做比较。OFDM技术的出现,其实应该是早于CDMA技术的,只是当时受到了硬件的局限,让OFDM技术显得有点不合实际,所以才会基于当时的硬件发展状况,发展出CDMA技术。移动通信系统中常见的多址技术包括频分多址(FrequencyDivisionMultipleAccess,、FDMA)、时分多址(TimeDivisionMultipleAccess,TDMA)、码分多址(CodeDivisionMultipleAccess,CDMA)、空分多址(SpaceDivisionMultipleAccess,SDMA)。FDMA是以不同的频率信道实现通信。TDMA是以不同的时隙实现通信。CDMA是以不同的代码序列来实现通信的。SDMA是以不同方位信息实现多址通信。频分多址

时分多址

码分多址

正交频分多址OFDM将传输频宽分割成多个窄频宽的子通道,同时使用多个载波来载送讯息,由于讯息资料被平均分配于各个子通道同时传送,有效降低每个子通道之实质资料量与传送速率,因而具有良好频谱使用效率及绝佳多重路径损耗(multipathfading)之免疫力。CDMA是一种分码多工扩频(SpreadSpectrum)技术,将原始窄频讯息以拟真杂讯乱码(Pseudorandomnoisecode)扩展成宽频讯号,所有使用者资讯在同一频道同时收送资料,因而有效的增进频谱使用效益。更由于将传送讯息隐藏于杂讯中,故具备高隐密性,不易被侦搜之特性。对于单蜂窝或多蜂窝的环境,OFDM性能远优于CDMA。在单蜂窝的环境下,OFDM可允许同时通话的用户数为CDMA的2至10倍。对于多蜂窝环境,OFDM可允许同时通话的用户数为CDMA的0.7至4倍。OFDM和CDMA在用户容量上的差异主要在于是否使用了蜂窝分区(cellsectorization)和语音激活检测技术(voiceactivitydetection)。如:用1.25MHz的带宽和19.5kbit/s的用户数据率时,CDMA在单蜂窝系统中性能较差,在每个蜂窝(cell)中仅允许7~16个用户同时通话,而对于OFDM系统则可以达到128个用户。这种CDMA的低蜂窝容量是由于在反向传输链接中使用非正交码导致了较高的用户间干扰造成的。CDMA技术是基于扩频通信理论的调制和多址连接技术。OFDM技术属于多载波调制技术,它的基本思想是将信道分成许多正交子信道,在每个子信道上使用一个子载波进行调制,并且各个子载波并行传输。OFDM和CDMA技术各有利弊。CDMA具有众所周知的优点,而采用多种新技术的OFDM也表现出了良好的网络结构可扩展性、更高的频谱利用率、更灵活的调制方式和抗多径干扰能力。下面主要从调制技术、峰均功率比、抗窄带干扰能力等角度分析这两种技术在性能上的具体差异。CDMA技术是基于扩频通信理论的调制和多址连接技术。OFDM技术属于多载波调制技术,它的基本思想是将信道分成许多正交子信道,在每个子信道上使用一个子载波进行调制,并且各个子载波并行传输。OFDM和CDMA技术各有利弊。CDMA具有众所周知的优点,而采用多种新技术的OFDM也表现出了良好的网络结构可扩展性、更高的频谱利用率、更灵活的调制方式和抗多径干扰能力。下面主要从调制技术、峰均功率比、抗窄带干扰能力等角度分析这两种技术在性能上的具体差异。——调制技术。一般来说,无线系统中频谱效率可以通过采用16QAM(正交幅度调制)、64QAM乃至更高阶的调制方式得到提高,而且一个好的通信系统应该在频谱效率和误码率之间获得最佳平衡。在CDMA系统中,下行链路可支持多种调制,但每条链路的符号调制方式必须相同,而上行链路却不支持多种调制,这就使得CDMA系统丧失了一定的灵活性。并且,在这种非正交的链路中,采用高阶调制方式的用户必将会对采用低阶调制的用户产生很大的噪声干扰。在OFDM系统中,每条链路都可以独立调制,因而该系统不论在上行还是在下行链路上都可以容易地同时容纳多种混合调制方式。这就可以引入“自适应调制”的概念。它增加了系统的灵活性,例如,在信道好的条件下终端可以采用较高阶的如64QAM调制以获得最大频谱效率,而在信道条件变差时可以选择QPSK(四相移相键控)调制等低阶调制来确保信噪比。这样,系统就可以在频谱利用率和误码率之间取得最佳平衡。此外,虽然信道间干扰限制了某条特定链路的调制方式,但这一点可以通过网络频率规划和无线资源管理等手段来解决。——峰均功率比(PAPR)。这也是设备商们应该考虑的一个重要因素。因为PAPR过高会使得发送端对功率放大器的线性要求很高,这就意味着要提供额外功率、电池备份和扩大设备的尺寸,进而增加基站和用户设备的成本。CDMA系统的PAPR一般在5~11dB,并会随着数据速率和使用码数的增加而增加。目前已有很多技术可以降低CDMA的PAPR。在OFDM系统中,由于信号包络的不恒定性,使得该系统对非线性很敏感。如果没有改善非线性敏感性的措施,OFDM技术将不能用于使用电池的传输系统和手机等。目前有很多技术可以降低OFDM的PAPR。——抗窄带干扰能力。CDMA的最大优势就表现在其抗窄带干扰能力方面。因为干扰只影响整个扩频信号的一小部分;而OFDM中窄带干扰也只影响其频段的一小部分,而且系统可以不使用受到干扰的部分频段,或者采用前向纠错和使用较低阶调制等手段来解决。——抗多径干扰能力。在无线信道中,多径传播效应造成接收信号相互重叠,产生信号波形间的相互干扰,使接收端判断错误。这会严重地影响信号传输的质量。为了抵消这种信号自干扰,CDMA接收机采用了RAKE分集接收技术来区分和绑定多路信号能量。为了减少干扰源,RAKE接收机提供一些分集增益。然而由于多路信号能量不相等,试验证明,如果路径数超过7或8条,这种信号能量的分散将使得信道估计精确度降低,RAKE的接收性能下降就会很快。OFDM技术与RAKE接收的思路不同,它是将待发送的信息码元通过串并变换,降低速率,从而增大码元周期,以削弱多径干扰的影响。同时它使用循环前缀(CP)作为保护间隔,大大减少甚至消除了码间干扰,并且保证了各信道间的正交性,从而大大减少了信道间干扰。当然,这样做也付出了带宽的代价,并带来了能量损失:CP越长,能量损失就越大。——功率控制技术。在CDMA系统中,功率控制技术是解决远近效应的重要方法,而且功率控制的有效性决定了网络的容量。相对来说功率控制不是OFDM系统的基本需求。OFDM系统引入功率控制的目的是最小化信道间干扰。——网络规划。由于CDMA本身的技术特性,CDMA系统的频率规划问题不很突出,但却面临着码的设计规划问题。OFDM系统网络规划的最基本目的是减少信道间的干扰。由于这种规划是基于频率分配的,设计者只要预留些频段就可以解决小区分裂的问题。——均衡技术。均衡技术可以补偿时分信道中由于多径效应而产生的ISI。在CDMA系统中,信道带宽远远大于信道的平坦衰落带宽。由于扩频码自身良好的自相关性,使得在无线信道传输中的时延扩展可以被看作只是被传信号的再次传送。如果这些多径信号相互间的延时超过一个码片的长度,就可被RAKE接收端视为非相关的噪声,而不再需要均衡。对OFDM系统,在一般的衰落环境下,均衡不是改善系统性能的有效方法,因为均衡的实质是补偿多径信道特性。而OFDM技术本身已经利用了多径信道的分集特性,因此该系统一般不必再作均衡。(本文由论坛会员lsaaa投稿,感谢他的贡献,希望广大C友积极投稿,投稿其实也是深度学习的一种途径,投稿信箱:luntan@)LTE关键技术之OFDM和MIMO2013-06-06移动通信网概述:LTE是LongTermEvolution,大多数资料也都有介绍,是3G伙伴组织3GPP牵头制定的第四代移动通信技术。我这里特别要指出的是LTE是一个站在巨人肩膀上的技术,借鉴了很多其它通信技术的优点,如OFDM和MIMO都是借鉴的Wimax,HARQ是借鉴的CDMA,所以通信技术发展到LTE算是一个集大成者,另外随着3GPP2没落和高通宣布CDMA支持LTE的演进,LTE可以说将来有一统通信技术的趋势。背景简述:在讲LTE关键技术之前先讲讲影响通信速率的关键点吧,大家都知道通信技术越发展速率越快,可是到底是哪些技术促成了速率的提升呢?下面我写一个公式:

C=BxV在这里,C表示为速率,B是带宽,V是每Hz的速率,通过这个公式我们可以发现,如果想提高网络的速度有2个方法,一个是增加带宽,一个是增加频带利用率。那么LTE是如何在这两方面进行实现的呢?首先讲讲增加带宽,这个技术说起来简单但是实际上是非常复杂的,也是直接导致CDMA技术在4G被pass的原因之一。如果将一个通信技术的频谱从1.25MHz扩展到20MHz,要面临很多的问题,第一个是多载波的聚合,举个例子,你原来只需要管理个单车道,现在突然给你个100车道,第一个就是协调问题,要保证不乱,其次调度问题,要保证高效,所以复杂程度大大的增加,其次是频谱特性问题,那有的人会问,干嘛要多载波聚合,直接一个载波不行了么?如果你真的搞一个20Mhz的载波,跨度那么大,频率特性就很难兼顾,包括传播特性,扩频效率等,另外包太大的话调度的精度也受影响,因此LTE选择了含正交子载波技术的OFDM技术来实现多增加带宽。其次就是增加频带利用率,在这里简单说明一下信道编码的方式,信源要最终发射必须要经过编码和调制,编码的作用是将前后的信息位建立联系并最终保证纠错,相当于一种冗余,而调制的方式则是通过相位来区别更多的符号,相当于一种压缩,那么高效的编码和高阶的调制无疑会增加频谱利用率,在这点上LTE并没有多大进步,和3G一样,最高速率用的是turbo编码和64QAM调制技术,但是LTE支持MIMO也是一种增加频谱利用率的方式。所以,LTE速率的提升关键就在于OFDM和MIMO这两个技术,下面先重点讲解这两个技术。LTE关键技术:一、

OFDM(orthogonalfrequentlydivisionmultiplexing)正交频分复用。OFDM原理很简单,就是将大的频谱分为若干小的子载波,各相邻子载波相互重叠,相邻子载波互相正交(通过傅里叶变实现),从而使其重叠但不干扰。然后将串行数据映射到子载波上传输,实现统一调度。图1

OFDM由上图可以看出,OFDM和传统的FDM多载波调制技术的区别,传统的多载波是分开的,载波之间要有保护间隔,而OFDM则是重叠在一起的,最大的一个好处就是节省了带宽,同时OFDM是统一调度,而传统的FDM是子载波分别调度,效率是不一样的。同时OFDM的子载波也不同于传统的载波,他非常小,小于信道相干带宽,这样的好处是可以克服频率选择性衰落,举个例子,1hz和1.1hz之间的无线特性几乎一样,而1hz和101hz之间的无线特性就差别大了,带宽越小,衰落越一致,同理一个OFDM符号的时间也是很小的,小于相干时间可以克服时间选择性衰落,等效为一个线性时不变系统。

而对于OFDM来说,最难的还是在于如何保证各个子载波间的正交,其重要的一点就是利用了快速傅里叶变换,还有就是近代芯片运算能力的增加。傅里叶变换本身很复杂(LTE用的是快速傅里叶变换,简单了很多),下面是个简化版的公式

由于是简化版的,所以这个公式的版本还有很多,表明意思即可,看公式只有当m和n相等时才会得出1,m和n不等的话就是0。这就是正交的自相关性,也就是只有自己才能解出自己,别人不行,这点很重要。下面举个例子,例如信息A在子载波m上传递,信息B在n上传递,那么当子载波重叠后,我要将A取出怎么办?可以计算下。由于A在m子载波上,所以我用去取A,都积分也就是A的m载波和m载波自相关,所以=1,而B的n载波和m载波完全不想关,所以=0。从而保证了各个子载波虽然重叠但是不会互相干扰。OFDM有很多优点,但是也有其不可克服的缺点,如由于一个OFDM符号时间和频率都很小所以对频偏比较敏感,还有由于信号重叠厉害就会需要克服较大的峰均比PARA。二、

OFDMA正交频分多址OrthogonalFrequencyDivisionMultipleAccessOFDM是一种频分技术,而OFDMA则是利用这种频分技术而实现的多址技术,很多人会搞混,举个例子说,OFDM像是数字,而OFDMA是学号,利用学好可以区分学生,但是实际讲述的时候还是很难分开讲,因为OFDMA就是基于OFDM。严格的是OFDMA=OFDM+FDMA+TDMA从而实现区分用户的目的OFDMA要实现主要有2点1、将高速串行数据流转化为并行,实现串并转换,必须为并行能进行傅里叶变换。2、将每一路调制到各个子载波上,子载波在经过快速傅里叶变换FFT(或者IFFT)实现互相正交。图2

OFDM发射图OFDMA继承了OFDM的特点,具有随着带宽的增加,OFDMA信号仍能保持正交的特点,而CDMA则会因为多载波多径而失去正交。同时OFDMA可以轻松实现频域调度,避免了传统FDMA技术的调度和协调难题,还有就是更加支持MIMO。尤其是OFDMA对频谱的支持多样,现网是支持6种带宽,如下图,可以根据实际需要灵活使用。图3支持带宽另外,OFDMA在实际应用中分为集中式和分布式,如图4,集中式会将连续的子载波都分给1个用户,而分布式则是交叉分布,各有优缺点,但是现网多用集中式,调度起来简单效率高。图4子载波分配方式其实OFDM还有很多东西要讲,也很复杂,但是我个人认为大家只需要理解精髓就可以了,OFDM技术在我们LTE中最重要的一点就是可以快速的实现子载波的正交。注:LTE上行的技术是SC-FDMA,很多人说不是OFDM,其实就是理解错了,因为SC-FDMA字面理解是单载波频分多址,实际上就是在OFDM之前增加了一步,DFT扩频,模拟出一个单载波,由于单载波可以克服OFDMA多子载波造成的峰均比问题,所以对于功放能力较差的手机来说也是一种变通的做法。三、

CP(cyclicprefix)循环前缀在上面的图2,在并串转换后需要插入一个CP,那么CP的作用是干嘛用的呢。众所周知,信号在空间的传递是会经过反射和折射的,那么一路信号到达接收端会变成几路,这几路会存在时延导致互相干扰,如图5图5多径导致符号间干扰上面就是典型的多径导致符号间干扰,由于第2径的第一个信号延迟,一部分落到第1径的第二个符号上,导致第二个符号正交性破坏从而失去正交性无法解调出来。为了避免这种状况,就设计了保护间隔出来,在每个信号之前增加一个间隔,只要时延小于间隔就不会互相影响,如图6图6加入保护间隔加入了保护间隔后,虽然第2径第一个信号延迟了,但是刚好落入第1径的第二个符号的保护间隔内,在解调时会随着CP一起抛弃,不会干扰到第二个符号,但是上图有个问题,就是第2径的第二个符号的保护间隔落入了第1径的第二个符号内,会不会产生干扰呢?答案是肯定的,因为保护间隔本身也不是正交的,那么解决的办法就是采用CP,循环前缀。图7

CP所谓循环前缀CP的意思就是我这个保护间隔不用传统的全0,而是用我自身的一部分,如图7,将符号的最后一部分拿出来放到前面当保护间隔,就是CP。由于保护间隔是信号的一部分,所以不会破坏符号本身的正交性,是一种非常聪明的做法。由于基站覆盖的距离远近不同,多径延迟也不同,所以CP也分3种。常规,扩展和超长扩展,应用范围也不同。图8cp长度一般来说超长扩展除非在海边等特殊场景其它地方是用不到的,所以常见的就常规和扩展2种,CP的长度也会影响物理层资源块的大小,间接影响速率。(以目前移动LTE实验网的密度,我估计只有常规CP就行了)四、

MIMO(Multiple-InputMultiple-Out-put)系统MIMO技术可以说是4G必备的技术,无论哪种4G制式都会用,原理是通过收发端的多天线技术来实现多路数据的传输,从而增加速率。MIMO大致可以分为3类,空间分集,空间复用和波束赋形。有的资料加了一个多用户MIMO,其实就是单用户的一个引申。1、空间分集(发射分集、传输分集)利用较大间距的天线阵元之间或赋形波束之间的不相关性,发射或接收一个数据流,避免单个信道衰落对整个链路的影响。其实很简单,看图就明白了。图9空间分集其实说白了,就是2跟天线传输同一个数据,但是2个天线上的数据互为共轭,一个数据传2遍,有分集增益,保证数据能够准确传输。2、空间复用(空分复用)利用较大间距的天线阵元之间或赋形波束之间的不相关性,向一个终端/基站并行发射多个数据流,以提高链路容量(峰值速率)。图10空间复用

如果上一个技术是增加可靠性,这个技术就是增加峰值速率,2个天线传输2个不同的数据流,相当于速率增加了一倍,当然,必须要在无线环境好的情况下才行。

另外注意一点,采用空间复用并不是天线多了就行,还要保证天线之间相关性低才行,否则会导致无法解出2路数据,直说大家理解不了,可以通过数学公式来阐明。假设收发双方是MIMO2*2,如图11图11例子那么UE侧的计算公式是由于是UE接收,所以y1和y2都知道,h和n是天线的相关特性也都知道,求x。假如天线的相关性较高,h11和h21相等,h12和h22相等,或者等比例,那么这个公式就无解。如

是一个二元一次方程,由于上下两个方程成比例,所以无法解出x1和x2的。也就无法使用空间复用,因为这两根天线相关性太高了,如果想解决的话,可以增加天线的间隔从而使h不成比例,一般建议大于4倍波长,具体要看天线说明。3、波束赋形利用较小间距的天线阵元之间的相关性,通过阵元发射的波之间形成干涉,集中能量于某个(或某些)特定方向上,形成波束,从而实现更大的覆盖和干扰抑制效果。图12各种波束赋形上面是单播波束赋形,波束赋形多址和多播波束赋形,通过判断UE位置进行定向发射,提高传输可靠性。这个在TD-SCDMA上已经得到了很好的应用。而至于多用户MU-MIMO,实际上是将两个UE认为是一个逻辑终端的不同天线,其原理和单用户的差不多,但是采用MU-MIMO有个很重要的限制条件,就是这2个UE信道必须正交,否则解不出来。这个在用户较多的场景还行,用户少了的话很难找到。(也有中说法只要相关性弱就行)4、LTEr8版本中的MIMO分类目前的R8版本主要分了7类MIMO,具体现网中使用哪种需要网优人员结合实际情况去设置相关的门限和条件。下面列出这7类分别讲解下原理和适用场景。(1)

单天线传输,也是基础模式,兼容单天线ue。(2)

不同模式在不同天线上传输同一个数据,适用于覆盖边缘。(3)

开环空分复用,无需用户反馈,不同天线传输不同的数据,相当于速率增加一倍,适用于覆盖较好区域(4)

同上,只不过增加了用户反馈,对无线环境的变化更敏感(5)

多个天线传输给多个用户,如果用户较多且每个用户数据量不大的话可以采用,增加小区吞吐量。(6)

闭环波束赋形一种,基于码本的(预先设置好),预编码矩阵是在接收端终端获得,并反馈PMI,由于有反馈所以可以形成闭环。(7)

无需码本的波束赋形,适用于TDD,由于TDD上下行是在同一频点,所以可以根据上行推断出下行,无需码本和反馈,FDD由于上下行不同频点所以不能使用。5、上行MIMO技术由于我的资料都是R8版本的,所以截止到R8版本,上行支持MU-MIMO,但是上行天线只支持1发,也就是1x2和1x4,可以采用最高阶的64qam调制。小结:

OFDM和MIMO虽然不是LTE最先采用但是确是LTE精髓所在,如果你能理解的话就有一定编码的知识就会知道为何LTE能够实现那么高的速率了,希望看完本文能让你对此有个整体的认识。本文由论坛会员bbgoal(hntele)投稿,感谢他的贡献。bbgoal在论坛有《白话LTE关键技术》系列,以及LTE群中在线视频讲解LTE技术,感兴趣的C友可以前往观看。为什么OFDM系统比CDMA系统更容易与MIMO技术结合?2013-06-06移动通信网为什么OFDM系统比CDMA系统更容易与MIMO技术结合?

MIMO技术的关键是有效避免天线之间的干扰,以区分多个并行数据流。众所周知,在水平衰落信道中可以实现更简单的MIMO接收。而在频率选择性信道中,由于天线间干扰和符号间干扰混合在一起,很难将MIMO接收和信道均衡分开处理。如果采用将MIMO接收和信道均衡混合处理的MIMO接收均衡的技术,则接收机会比较复杂。

因此,由于每个OFDM子载波内的信道(带宽只有15KHz)可看作水平衰落信道,MIMO系统带来的额外复杂度可以控制在较低的水平(随天线数量呈线性增加)。相对而言,单载波MIMO系统的复杂度与天线数量和多径数量的乘积的幂成正比,很不利于MIMO技术的应用。MIMO系统在一定程度上可以利用传播中多径分量,也就是说MIMO可以抗多径衰落,但是对于频率选择性深衰落,MIMO系统依然是无能为力。目前解决MIMO系统中的频率选择性衰落的方案一般是利用均衡技术,还有一种是利用OFDM。4G需要极高频谱利用率的技术,而OFDM提高频谱利用率的作用毕竟是有限的,在OFDM的基础上合理开发空间资源,也就是MIMO-OFDM,可以提供更高的数据传输速率。另外ODFM由于码率低和加入了时间保护间隔而具有极强的抗多径干扰能力。由于多径时延小于保护间隔,所以系统不受码间干扰的困扰,这就允许单频网络(SFN)可以用于宽带OFDM系统,依靠多天线来实现,即采用由大量低功率发射机组成的发射机阵列消除阴影效应,来实现完全覆盖。3GPP系统架构演进(SAE)2013-06-08移动通信网3GPP系统架构演进(SAE)3GPPR8(Release8)在提出LTE的同时,也提出了SAE(ServiceArchitectureEvolution系统体系结构演进)的概念,SAE由演进分组核心网(EPCEvolvedPacketCore)和演进统一陆地无线接入网(E-UTRAN)两大部分构成。SAE采用了全IP的构架,简化了网络结构,使之更加扁平,集成其他非3GPP的接入技术,能支持更加灵活的业务。该体系结构将节点类型从以前的4种(NodeB,RNC,SGSN和GGSN)缩减到只有2种(eNodeB和GW)。所有接口均支持基于IP的协议,所有的业务,包括语言基于IP(VoIP)的数据连接,节约了运营商的成本。演进系统支持不同的IP版本,并支持没有IP连接的终端的IP地址配置,在终端附着到网络的初始接入阶段就建立IP。演进分组核心网(EPC)提供通向外部数据网络(例如互联网,公司局域网)和运营商业务(例如彩信,多媒体广播与多播业务)的通道,支持多种不同接入技术(例如,EDGE,WCDMA,LTE,WLAN,CDMA2000等)之间的移动切换。演进统一陆地无线接入网(E-UTRAN)负责所有激活终端(例如传送数据的终端)与无线相关的功能。终端直接接入无线网络的演进基站(eNodeB),然后通过EPC获得相应的服务。EPC包括控制平面和用户平面,移动性管理实体(MMS)是工作在控制平面的节点。用户平面由两个节点服务网关(S-GW)和分组数据网网关(P-GW)组成,分组数据网网关(P-GW)是所有接入技术的通用锚点,为所有用户提供一个稳定的IP接入点,无论他们是在一种接入技术之内移动,还是在多种接入技术之间移动。服务网关(S-GW)是3GPP移动网络内的锚点,负责接入eNodeB,为LTE接入用户的移动提供服务。移动性管理实体功能与网关功能分离,即控制平面/用户平面分离,有助于网络部署、单个技术的演进以及全面灵活的扩容。SAE是一个同时支持GSM、WCDMA/HSPA和LTE技术的通用分组核心网,实现用户在LTE系统和其他系统之间无缝移动,实现从3G到LTE的灵活迁移,也能够集成采用基于客户端和网络的移动IP,WiMAX等的非3GPP接入技术。本文由论坛会员kokoro投稿,感谢他的贡献。LTE系统结构2013-06-08移动通信网整个LTE系统由演进型分组核心网(EvolvedPacketCore,EPC)、演进型基站(eNodeB)和用户设备(UE)三部分组成,如图1所示。其中,EPC负责核心网部分,EPC控制处理部分称为MME,数据承载部分称为SAEGateway(S-GW);eNodeB负责接入网部分,也称E-UTRAN;UE指用户终端设备。图1:LTE网络构架eNodeB与EPC通过S1接口连接;eNodeB之间通过X2接口连接;eNodeB与UE之间通过Uu接口连接。与UMTS相比,由于NodeB和RNC融合为网元eNodeB,所以LTE少了Iub接口。X2接口类似于Iur接口,S1接口类似于Iu接口,但都有较大简化。相应的,其核心网和接入网的功能划分也有所变化,如图2所示:图2核心网和接入网之间功能划分MME的功能主要包括:寻呼消息发送;安全控制;Idle状态的移动性管理;SAE承载管理;以及NAS信令的加密与完整性保护等。S‐GW的功能主要包括:数据的路由和传输,以及用户面数据的加密。本文由论坛会员lsaaa投稿,感谢他的贡献。LTE系统接口协议2013-06-08移动通信网空中接口协议栈空中接口是指终端和接入网之间的接口,通常也称之为无线接口。无线接口协议主要是用来建立、重配置和释放各种无线承载业务。无线接口协议栈根据用途分为用户平面协议栈和控制平面协议栈。2.1控制平面协议控制平面负责用户无线资源的管理,无线连接的建立,业务的QoS保证和最终的资源释放,如图3所示:控制平面协议栈主要包括非接入层(Non‐AccessStratum,NAS)、无线资源控制子层(RadioResourceControl,RRC)、分组数据汇聚子层(PacketDateConvergenceProtocol,PDCP)、无线链路控制子层(RadioLinkControl,RLC)及媒体接入控制子层(MediaAccessControl,MAC)。控制平面的主要功能由上层的RRC层和非接入子层(NAS)实现。NAS控制协议实体位于终端UE和移动管理实体MME内,主要负责非接入层的管理和控制。实现的功能包括:EPC承载管理,鉴权,产生LTE‐IDLE状态下的寻呼消息,移动性管理,安全控制等。RRC协议实体位于UE和eNodeB网络实体内,主要负责接入层的管理和控制,实现的功能包括:系统消息广播,寻呼建立、管理、释放,RRC连接管理,无线承载(RadioBearer,RB)管理,移动性功能,终端的测量和测量上报控制。PDCP、MAC和RLC的功能和在用户平面协议实现的功能相同2.2用户平面协议用户平面用于执行无线接入承载业务,主要负责用户发送和接收的所有信息的处理,如图2‐4所示:

图4用户平面协议栈用户平面协议栈主要由MAC,RLC,PDCP三个子层构成。PDCP主要任务是头压缩,用户面数据加密。MAC子层实现与数据处理相关的功能,包括信道管理与映射、数据包的封装与解封装,HARQ功能,数据调度,逻辑信道的优先级管理等。RLC实现的功能包括数据包的封装和解封装,ARQ过程,数据的重排序和重复检测,协议错误检测和恢复等。3、S1接口协议栈3.1S1接口用户平面S1用户面接口(S1‐U)是指连接在eNodeB和S‐GW之间的接口。S1‐U接口提供eNodeB和S‐GW之间用户平面协议数据单元(ProtocolDateUnite,PDU)的非保障传输。S1接口用户平面协议栈如图2‐5所示。S1‐U的传输网络层建立在IP层之上,UDP/IP协议之上采用GPRS用户平面隧道协议(GPRSTunnelingProtocolforUserPlane,GTP‐U)来传输S‐GW和eNodeB之间的用户平面PDU。图5S1接口用户平面(eNB-S-GW)3.2S1接口控制平面S1控制平面接口(S1‐MME)是指连接在eNodeB和MME之间的接口。S1控制平面接口如图6所示。与用户平面类似,传输网络层建立在IP传输基础上;不同之处在于IP层之上采用SCTP层来实现信令消息的可靠传输。应用层协议栈可参考S1‐AP(S1应用协议)。图6S1接口控制平面(eNB-MME)在IP传输层,PDU的传输采用点对点方式。每个S1‐MME接口实例都关联一个单独的SCTP,与一对流指示标记作用于S1‐MME公共处理流程中;只有很少的流指示标记作用于S1‐MME专用处理流程中。MME分配的针对S1‐MME专用处理流程的MME通信上下文指示标记,以及eNodeB分配的针对S1‐MME专用处理流程的eNodeB通信上下文指示标记,都应当对特定UE的S1‐MME信令传输承载进行区分。通信上下文指示标记在各自的S1‐AP消息中单独传送。3.3主要功能S1接口主要具备以下功能:(1)EPS承载服务管理功能,包括EPS承载的建立、修改和释放。(2)S1接口UE上下文管理功能。(3)EMM‐CONNECTED状态下针对UE的移动性管理功能。包括Intra‐LTE切换、Inter‐3GPP‐RAT切换。(4)S1接口寻呼功能。寻呼功能支持向UE注册的所有跟踪区域内的小区中发送寻呼请求。基于服务MME中UE的移动性管理内容中所包含的移动信息,寻呼请求将被发送到相关eNodeB。(5)NAS信令传输功能。提供UE与核心网之间非接入层的信令的透明传输。(6)S1接口管理功能。如错误指示、S1接口建立等。(7)网络共享功能。(8)漫游与区域限制支持功能。(9)NAS节点选择功能。(10)初始上下文建立功能。4、X2接口协议栈4.1X2接口用户平面X2接口用户平面提供eNodeB之间的用户数据传输功能。X2的用户平面协议栈如图2‐7所示,与S1‐UP协议栈类似,X2‐UP的传输网络层基于IP传输,UDP/IP之上采用GTP‐U来传输eNodeB之间的用户面PDU。

图7X2接口用户面(eNB-eNB)4.2X2接口控制平面X2控制面接口(X2‐CP)定义为连接eNB之间接口的控制面。X2接口控制面的协议栈如图8所示,传输网络层是建立在SCTP上,SCTP是在IP上。应用层的信令协议表示为X2‐AP(X2应用协议)。图8X2接口控制面每X2‐C接口含一个单一的SCTP并具有双流标识的应用场景应用X2‐C的一般流程。具有多对流标识仅应用于X2‐C的特定流程。源eNB为X2‐C的特定流程分配源eNB通信的上下文标识,目标eNB为X2‐C的特定流程分配目标eNB通信的上下文标识。这些上下文标识用来区别UE特定的X2‐C信令传输承载。通信上下文标识通过各自的X2‐AP消息传输。4.3主要功能X2‐AP协议主要支持以下功能:

(1)支持UE在EMM‐CONNECTED状态时的LTE接入系统内的移动性管理功能。如在切换过程中由源eNB到目标eNB的上下文传输;源eNB与目标eNB之间用户平面隧道的控制、切换取消等。(2)上行负载管理功能。(3)一般性的X2管理和错误处理功能,如错误指示等。本文由论坛会员lsaaa投稿,感谢他的贡献。LTE空中接口信道和映射关系2013-06-13移动通信网LTE空中接口概述空中接口是指终端与接入网之间的接口,简称Uu口,通常也成为无线接口。在LTE中,空中接口是终端和eNodeB之间的接口。空中接口协议主要是用来建立、重配置和释放各种无线承载业务的。空中接口是一个完全开放的接口,只要遵守接口规范,不同制造商生产的设备就能够互相通信。空中接口协议栈主要分为三层两面,三层是指物理层、数据链路层、网络层,两面是指控制平面和用户平面。从用户平面看,主要包括物理层、MAC层、RLC层、PDCP层,从控制平面看,除了以上几层外,还包括RRC层,NAS层。RRC协议实体位于UE和ENB网络实体内,主要负责对接入层的控制和管理。NAS控制协议位于UE和移动管理实体MME内,主要负责对非接入层的控制和管理。空中接口协议栈具体结构如图1和2所示。层2(MAC层、RLC层、PDCP层)各层具体功能将在后面几节中描述。图1空中接口用户面协议栈结构图2空中接口控制面协议栈结构信道的定义和映射关系LTE沿用了UMTS里面的三种信道,逻辑信道,传输信道与物理信道。从协议栈的角度来看,物理信道是物理层的,传输信道是物理层和MAC层之间的,逻辑信道是MAC层和RLC层之间的,它们的含义是:(1)逻辑信道,传输什么内容,比如广播信道(BCCH),也就是说用来传广播消息的;(2)传输信道,怎样传,比如说下行共享信道DL-SCH,也就是业务甚至一些控制消息都是通过共享空中资源来传输的,它会指定MCS,空间复用等等方式,也就说是告诉物理层如何去传这些信息;(3)物理信道,信号在空中传输的承载,比如PBCH,也就是在实际的物理位置上采用特定的调制编码方式来传输广播消息了。1.物理信道物理层位于无线接口协议的最底层,提供物理介质中比特流传输所需要的所有功能。物理信道可分为上行物理信道和下行物理信道。LTE定义的下行物理信道主要有如下6种类型:(1)物理下行共享信道(PDSCH):用于承载下行用户信息和高层信令。(2)物理广播信道(PBCH):用于承载主系统信息块信息,传输用于初始接入的参数。(3)物理多播信道(PMCH):用于承载多媒体/多播信息。(4)物理控制格式指示信道(PCFICH):用于承载该子帧上控制区域大小的信息。(5)物理下行控制信道(PDCCH):用于承载下行控制的信息,如上行调度指令、下行数据传输是指、公共控制信息等。(6)物理HARO指示信道((PHICH):用于承载对于终端上行数据的ACK/NACK反馈信息,和HARO机制有关。LTE定义的上行物理信道主要有如下3种类型:(1)物理上行共享信道(PUSCH):用于承载上行用户信息和高层信令。(2)物理上行控制信道(PUCCH):用于承载上行控制信息。(3)物理随机接入信道(PRACH):用于承载随机接入前道序列的发送,基站通过对序列的检测以及后续的信令交流,建立起上行同步。2.传输信道物理层通过传输信道向MAC子层或更高层提供数据传输服务,传输信道特性由传输格式定义。传输信道描述了数据在无线接口上是如何进行传输的,以及所传输的数据特征。如数据如何被保护以防止传输错误,信道编码类型,CRC保护或者交织,数据包的大小等。所有的这些信息集就是我们所熟知的“传输格式”。传输信道也有上行和下行之分。LTE定义的下行传输信道主要有如下4种类型:(1)广播信道(BCH):用于广播系统信息和小区的特定信息。使用固定的预定义格式,能够在整个小区覆盖区域内广播。(2)下行共享信道(DL-SCH):用于传输下行用户控制信息或业务数据。能够使用HARQ;能够通过各种调制模式,编码,发送功率来实现链路适应;能够在整个小区内发送;能够使用波束赋形;支持动态或半持续资源分配;支持终端非连续接收以达到节电目的;支持MBMS业务传输。(3)寻呼信道(PCH):当网络不知道UE所处小区位置时,用于发送给UE的控制信息。能够支持终端非连续接收以达到节电目的;能在整个小区覆盖区域发送;映射到用于业务或其他动态控制信道使用的物理资源上。(4)多播信道(MCH):用于MBMS用户控制信息的传输。能够在整个小区覆盖区域发送;对于单频点网络支持多小区的MBMS传输的合并;使用半持续资源分配。LTE定义的上行传输信道主要有如下2种类型:

(1)上行共享信道(UL-SCH):用于传输下行用户控制信息或业务数据。能够使用波束赋形;有通过调整发射功率、编码和潜在的调制模式适应链路条件变化的能力;能够使用HARQ;动态或半持续资源分配。

(2)随机接入信道(RACH):能够承载有限的控制信息,例如在早期连接建立的时候或者RRC状态改变的时候。3.逻辑信道逻辑信道定义了传输的内容。MAC子层使用逻辑信道与高层进行通信。逻辑信道通常分为两类:即用来传输控制平面信息的控制信道和用来传输用户平面信息的业务信道。而根据传输信息的类型又可划分为多种逻辑信道类型,并根据不同的数据类型,提供不同的传输服务。LTE定义的控制信道主要有如下5种类型:(1)广播控制信道(BCCH):该信道属于下行信道,用于传输广播系统控制信息。(2)寻呼控制信道(PCCH):该信道属于下行信道,用于传输寻呼信息和改变通知消息的系统信息。当网络侧没有用户终端所在小区信息的时候,使用该信道寻呼终端。(3)公共控制信道(CCCH):该信道包括上行和下行,当终端和网络间没有RRC连接时,终端级别控制信息的传输使用该信道。(4)多播控制信道(MCCH):该信道为点到多点的下行信道,用于UE接收MBMS业务。(5)专用控制信道(DCCH):该信道为点到点的双向信道,用于传输终端侧和网络侧存在RRC连接时的专用控制信息。LTE定义的业务信道主要有如下2种类型:(1)专用业务信道(DTCH):该信道可以为单向的也可以是双向的,针对单个用户提供点到点的业务传输。(2)多播业务信道(MTCH):该信道为点到多点的下行信道。用户只会使用该信道来接收MBMS业务。4.相互映射关系MAC子层使用逻辑信道与RLC子层进行通信,使用传输信道与物理层进行通信。因此MAC子层负责逻辑信道和传输信道之间的映射。(1)逻辑信道至传输信道的映射LTE的映射关系较UTMS简单很多,上行的逻辑信道全部映射在上行共享传输信道上传输;下行逻辑信道的传输中,除PCCH和MBMS逻辑信道有专用的PCH和MCH传输信道外,其他逻辑信道全部映射到下行共享信道上(BCCH一部分在BCH上传输)。具体的映射关系如图3和图4所示。图3上行逻辑信道到传输信道的映射关系图4下行逻辑信道到传输信道的映射关系(2)传输信道至物理信道的映射上行信道中,UL-SCH映射到PUSCH上,RACH映射到PRACH上。下行信道中,BCH和MCH分别映射到PBCH和PMCH,PCH和DL-SCH都映射到PDSCH上。具体映射关系如图5和图6所示。图5上行传输信道到物理信道的映射关系图6下行传输信道到物理信道的映射关系LTE空中接口的分层结构2013-06-13移动通信网LTE空中接口的分层结构LTE空中接口采用分层结构,与WCDMA空中接口的分层结构一模一样,从上到下也是分为RRC-PDCP-RLC-MAC-PHY等几个层次,其中RRC属于网络层,PDCP、RLC和MAC属于链路层,PHY属于物理层。因此,如果熟悉WCDMA空中接口的话,LTE空中接口的结构应该不会感到陌生。接下来简要介绍各个层次的功能。RRC无线资源控制负责LTE空中接口的无线资源分配与控制,还承担了NAS信令的处理和发送工作。由于RRC承担了LTE空中接口的无线资源管理工作,可以看成LTE空中接口的大脑,是LTE空中接口最重要的组成部分。从RRC的功能看,LTE空中接口与WCDMA空中接口没有什么区别。PDCP是LTE空中接口的一个显著变化,在WCDMA中尽管定义了PDCP,但是并没有实施,PDCP是可有可无的;在LTE中,PDCP成了必须的一个子层。理解PDCP还是要从控制面与用户面分别看。控制面上PDCP执行加密以及完整性保护。用户面上PDCP执行加密、包头压缩以及切换支持(也就是顺序发送以及重复性检查)。RLCLTE的RLC与WCDMA的RLC大同小异:也分为3种工作模式:TM、UM以及AM。不过由于LTE取消了CS域,没有了CS相关的承载和信道,结构变得比较简单。另外,加密的工作也从RLC中取消了。MAC是LTE与WCDMA空中接口功能接近,但是实施方式差异比较大的地方。比如随机接入是MAC的主要任务,LTE与WCDMA都具备,但是实施方法差异很大,LTE还引入了无竞争的随机接入。LTE的物理层反映了LTE的鲜明技术特点:OFDM+多天线,其中的时频结构、参考信号的位置、物理信道的种类,都是LTE所特有的。但是,LTE依旧保留了Turbo编码以及QAM的调制方式。详解PDCP

PDCP:PacketDataConvergenceProtocol,分组数据汇聚协议。PDCP协议发轫于WCDMA空中接口,壮大于LTE空中接口。PDCP位于RLC子层之上,是L2的最上面的一个子层,只负责处理分组业务的业务数据。PDCP主要用于处理空中接口上承载网络层的分组数据,例如IP数据流。在WCDMA空中接口中,PDCP的功能主要是压缩IP数据包的包头。由于IP数据包都带有一个很大的数据包头(20字节),仅仅传输这些头部信息就需要大量的无线资源,而这些头部信息往往又可压缩,为了提高IP数据流在空中接口上的传输效率,需要对IP数据包头部信息进行压缩。但是WCDMA现网对IP包头压缩需求并不迫切,因此现网没有实施PDCP。在LTE空中接口中,PDCP的功能变得不可或缺,这是由于LTE中抛弃了CS域,必须采用VoIP,而VoIP的数据包尺寸很小,IP包头就成了很大的累赘,必须压缩。LTE的PDCP的功能还进行了延伸,将加密功能也收归旗下,因此也就从仅仅处理用户面扩展到了用户面以及控制面大小通吃。LTE的PDCP甚至还加入了无损切换的支持。LTE空中接口中PDCP由规范TS36.323定义。从PDCP上,我们看到了一个跑龙套的到舞台主角的华丽变身过程。本文由论坛会员readhere投稿,感谢他的贡献,部分原文可参阅:/page.php?id=1732。readhere在论坛有《读懂OFDM公开课》系列,感兴趣的C友可以前往观看。外一篇:LTE和FDD

LTE的工作频段2013-06-13移动通信网TD-LTE的工作频段在R8中,TDD可用的频段从33到40号,有8个。其中B38:2.57~2.62GHz,可全球漫游;B39:1.88~1.92GHz,这是国内TD-SCDMA的频段;B40:2.3~2.4GHz,可全球漫游。B是Band的缩写,代表频段的意思。这些频段中,中国移动采用B38以及B39来实施室外覆盖,B40来实施室内覆盖。B38、B39、B40在中国移动分别又有绰号:D频段、F频段和E频段。到了R10,3GPP又引入了新的TDD频段,其中B41为2500~2690MHz,非常重要。因为中国政府已经宣布,将B41的全部频段用于TD-LTE。FDDLTE的工作频段

在R8中,第一个工作频段是3G的2.1GHz频段,不过由于3G系统正在使用,因此,第7个工作频段B7,也就是2.6GHz的频段成为LTE部署时的第一个频段,目前在北欧商用。值得一提的是,Band7上下行的中间就是TDD的B38。由于2.6G覆盖能力弱,因此美国商用系统,例如Verizon、AT&T采用了700M的频段,其中Verizon为B13,AT&T主要是B17。从全球的角度看,目前国际上LTE1800的造势活动很热闹,LTE1800就是原来的GSM1800,称为B3。对中国而言,B3还是很有商用价值的,特别适合联通。对于电信来说,B1应该是首选。本文由论坛会员readhere投稿,感谢他的贡献,部分原文可参阅:/page.php?id=1675。readhere在论坛有《读懂OFDM公开课》系列,感兴趣的C友可以前往观看。MAC

媒体接入控制层2013-06-13移动通信网MAC媒体接入控制层1.MAC层功能概述不同于UMTS,MAC子层只有一个MAC实体,包括传输调度功能、MBMS功能、MAC控制功能、UE级别功能以及传输块生成等功能块。MAC层结构如图1图1MAC层结构图MAC层的各个子功能块提供以下的功能:

(1)实现逻辑信道到传输信道的映射;

(2)来自多个逻辑信道的MAC服务数据单元(SDU)的复用和解复用;

(3)上行调度信息上报,包括终端待发送数据量信息和上行功率余量信息。基于HARQ机制的错误纠正功能;

(4)通过HARO机制进行纠错;

(5)同一个UE不同逻辑信道之间的优先级管理;

(6)通过动态调度进行UE之间的优先级管理;

(7)传输格式的选择,通过物理层上报的测量信息,用户能力等,选择相应的传输格式(包括调制方式和编码速率等),从而达到最有效的资源利用;

(8)MBMS业务识别;

(9)填充功能,即当实际传输数据量不能填满整个授权的数据块大小时使用。各功能与位置和链路方向的对应关系如图2所示。图2MAC功能与位置和链路方向的关系2.MAC层关键过程

1.调度与UMTS不同,LTE完全取消了专用信道,并引入了共享信道的概念。在不同UE不同逻辑信道之间划分共享信道资源的功能成为调度。早期的很多接入系统每个用户的业务都有专门的信道,虽然到了HSPA时已经有共享信道的概念,但是主要还是针对数据业务。LTE的几乎所有的应用与业务都是使用共享信道,由于各个业务与应用的对服务质量(QoS)的要求是不同的,如何为具有不同带宽要求、不同时延保障、不同QOS等级的各种业务合理地分配资源,在满足业务需求的基础上,提高网络的总体吞吐量和频谱效率,是分组调度的核心任务。LTE中引入了动态调度和半持续调度两种调度模式,其中半持续调度是在动态调度基础上为支持VoIP等业务引入的。(1)动态调度这种方法由MAC层(调度器)实时动态地分配时频资源和允许传输的速率,灵活性很高,但控制信令开销也大,适合突发特征明显的业务。动态调度的基本过程是:

a)eNodeB在控制信道上发送资源调度信令;b)UE检测控制信道,如果发现针对自己的资源调度信令,则按照信令中的信息进行数据传输。上行和下行的动态调度过程如图3、4所示。

图3上行动态调度过程

图4下行动态调度过程上行调度具体过程如下:(1)eNodeB通过

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论