2023-2024学年广西钦州市高二上数学期末调研试题含解析_第1页
2023-2024学年广西钦州市高二上数学期末调研试题含解析_第2页
2023-2024学年广西钦州市高二上数学期末调研试题含解析_第3页
2023-2024学年广西钦州市高二上数学期末调研试题含解析_第4页
2023-2024学年广西钦州市高二上数学期末调研试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年广西钦州市高二上数学期末调研试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数(其中)的部分图像如图所示,则函数的解析式为()A. B.C. D.2.如图,在平行六面体中,AC与BD的交点为M,设,,,则下列向量中与相等的向量是()A. B.C. D.3.即空气质量指数,越小,表明空气质量越好,当不大于100时称空气质量为“优良”.如图是某市3月1日到12日的统计数据.则下列叙述正确的是A.这天的的中位数是B.天中超过天空气质量为“优良”C.从3月4日到9日,空气质量越来越好D.这天的的平均值为4.4位同学报名参加四个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.24种 B.81种C.64种 D.256种5.下列关于斜二测画法所得直观图的说法中正确的有()①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③菱形的直观图是菱形;④正方形的直观图是正方形.A.① B.①②C.③④ D.①②③④6.已知是抛物线上的一个动点,是圆上的一个动点,是一个定点,则的最小值为A. B.C. D.7.在流行病学中,基本传染数是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.假设某种传染病的基本传染数,平均感染周期为4天,那么感染人数超过1000人大约需要()(初始感染者传染个人为第一轮传染,这个人每人再传染个人为第二轮传染)A.20天 B.24天C.28天 D.32天8.瑞士著名数学家欧拉在1765年提出定理:三角形的外心、重心、垂心位于同一直线上,这条直线被后人称为三角形的“欧拉线”.若满足,顶点,且其“欧拉线”与圆相切,则:①.圆M上的点到原点的最大距离为②.圆M上存在三个点到直线的距离为③.若点在圆M上,则的最小值是④.若圆M与圆有公共点,则上述结论中正确的有()个A.1 B.2C.3 D.49.下列命题中的假命题是()A.,B.存在四边相等的四边形不是正方形C.“存在实数,使”的否定是“不存在实数,使”D.若且,则,至少有一个大于10.将点的极坐标化成直角坐标是(

)A. B.C. D.11.饕餮(tāotiè)纹,青铜器上常见的花纹之一,盛行于商代至西周早期,最早出现在距今五千年前长江下游地区的良渚文化玉器上.有人将饕餮纹的一部分画到了方格纸上,如图所示,每个小方格的边长为,有一点从点出发每次向右或向下跳一个单位长度,且向右或向下跳是等可能性的,那么它经过次跳动后恰好是沿着饕餮纹的路线到达点的概率为()A. B.C. D.12.等比数列的前项和为,前项积为,,当最小时,的值为()A.3 B.4C.5 D.6二、填空题:本题共4小题,每小题5分,共20分。13.曲线围成的图形的面积为___________.14.已知球的半径为3,则该球的体积为_________.15.已知直线与圆交于两点,则面积的最大值为__________.16.若圆C的方程为,点P是圆C上的动点,点O为坐标原点,则的最大值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆过点,且离心率.(1)求椭圆C的标准方程;(2)若动点在椭圆上,且在第一象限内,点分别为椭圆的左、右顶点,直线分别与椭圆C交于点,过作直线的平行线与椭圆交于点,问直线是否过定点,若经过定点,求出该定点的坐标;若不经过定点,请说明理由.18.(12分)已知等比数列的前项和为,且.(1)求数列的通项公式;(2)令,求数列的前项和.19.(12分)已知集合,.(1)当a=3时,求.(2)若“”是“x∈A”的充分不必要条件,求实数a的取值范围.20.(12分)已知椭圆过点,离心率为.(1)求椭圆的方程;(2)过点作直线,与直线和椭圆分别交于两点,(与不重合).判断以为直径的圆是否过定点,如果过定点,求出定点坐标;如果不过定点,说明理由.21.(12分)已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数)(1)求的值;(2)是否存在常数,使得对于定义域内的任意,恒成立?若存在,求出的值;若不存在,请说明理由22.(10分)设等差数列的前项和为,为各项均为正数的等比数列,且,,再从条件①:;②:;③:这三个条件中选择一个作为已知,解答下列问题:(1)求和的通项公式;(2)设,数列的前项和为,求证:

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据题图有且,结合五点法求参数,即可得的解析式.【详解】由图知:且,则,所以,则,即,又,可得,,则,,又,即有.综上,.故选:B2、B【解析】根据向量加法和减法法则即可用、、表示出.【详解】故选:B.3、C【解析】这12天的AQI指数值的中位数是,故A不正确;这12天中,空气质量为“优良”的有95,85,77,67,72,92共6天,故B不正确;;从4日到9日,空气质量越来越好,,故C正确;这12天的指数值的平均值为110,故D不正确.故选C4、D【解析】利用分步乘法计数原理进行计算.【详解】每位同学均有四种选择,故不同的报名方法有种.故选:D5、B【解析】根据斜二侧直观图的画法法则,直接判断①②③④的正确性,即可推出结论【详解】由斜二测画法规则知:三角形的直观图仍然是三角形,所以①正确;根据平行性不变知,平行四边形的直观图还是平行四边形,所以②正确;根据两轴的夹角为45°或135°知,菱形的直观图不再是菱形,所以③错误;根据平行于x轴的长度不变,平行于y轴的长度减半知,正方形的直观图不再是正方形,所以④错误.故选:B.6、A【解析】恰好为抛物线的焦点,等于到准线的距离,要想最小,过圆心作抛物线的准线的垂线交抛物线于点,交圆于,最小值等于圆心到准线的距离减去半径4-1=.考点:1.抛物线的定义;2.圆中的最值问题;7、B【解析】根据题意列出方程,利用等比数列的求和公式计算n轮传染后感染的总人数,得到指数方程,求得近似解,然后可得需要的天数.【详解】感染人数由1个初始感染者增加到1000人大约需要n轮传染,则每轮新增感染人数为,经过n轮传染,总共感染人数为:即,解得,所以感染人数由1个初始感染者增加到1000人大约需要24天,故选:B【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程8、A【解析】由题意求出的垂直平分线可得△的欧拉线,再由圆心到直线的距离求得,得到圆的方程,求出圆心到原点的距离,加上半径判断A;求出圆心到直线的距离判断B;再由的几何意义,即圆上的点与定点连线的斜率判断C;由两个圆有公共点可得圆心距与两个半径之间的关系,求得的取值范围判断D【详解】由题意,△的欧拉线即的垂直平分线,,,的中点坐标为,,则的垂直平分线方程为,即由“欧拉线”与圆相切,到直线的距离,,则圆的方程为:,圆心到原点的距离为,则圆上的点到原点的最大距离为,故①错误;圆心到直线的距离为,圆上存在三个点到直线的距离为,故②正确;的几何意义:圆上的点与定点连线的斜率,设过与圆相切的直线方程为,即,由,解得,的最小值是,故③错误;的圆心坐标,半径为,圆的的圆心坐标为,半径为,要使圆与圆有公共点,则圆心距的范围为,,,解得,故④错误故选:A9、C【解析】利用简易逻辑的知识逐一判断即可.【详解】,故A正确;菱形的四边相等,但不一定是正方形,故B正确;“存在实数,使”的否定是“对任意的实数都有”,故C错误;假设且,则,与矛盾,故D正确;故选:C10、A【解析】本题考查极坐标与直角坐标互化由点M的极坐标,知极坐标与直角坐标的关系为,所以的直角坐标为即故正确答案为A11、B【解析】本题首先可根据题意列出次跳动的所有基本事件,然后找出沿着饕餮纹的路线到达点的事件,最后根据古典概型的概率计算公式即可得出结果.【详解】点从点出发,每次向右或向下跳一个单位长度,次跳动的所有基本事件有:(右,右,右)、(右,右,下)、(右,下,右)、(下,右,右)、(右,下,下)、(下,右,下)、(下,下,右)、(下,下,下),沿着饕餮纹的路线到达点的事件有:(下,下,右),故到达点的概率,故选:B.12、B【解析】根据等比数列相关计算得到,,进而求出与,代入后得到,利用指数函数和二次函数单调性得到当时,取得最小值.【详解】显然,由题意得:,,两式相除得:,将代入,解得:,所以,所以,,所以,其中单调递增,所以当时,取得最小值.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】曲线围成图形关于轴,轴对称,故只需要求出第一象限的面积即可.【详解】将或代入方程,方程不发生改变,故曲线关于轴,轴对称,因此只需求出第一象限的面积即可.当,时,曲线可化为:,表示的图形为一个半圆,围成的面积为,故曲线围成的图形的面积为.故答案:.14、【解析】根据球的体积公式计算可得;【详解】解:因为球的半径,所以球的体积;故答案为:15、##【解析】先求出的范围,再利用面积公式可求面积的最大值.【详解】圆即为,直线为过原点的直线,如图,连接,故,解得,此时,故的面积为,当且仅当时等号成立,此时即,故答案为:.16、##【解析】根据点与圆的位置关系求得正确答案.【详解】圆的方程可化为,所以圆心为,半径.由于,所以原点在圆外,所以最大值为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)过定点,【解析】(1)根据椭圆上的点及离心率求出a,b即可;(2)设点,设直线的方程为,联立方程,得到根与系数的关系,利用条件化简,结合椭圆方程,求出即可得解.【小问1详解】由,有,又,所以,椭圆C的标准方程为.【小问2详解】设点,设直线的方程为.如图,联立,消有:,韦达定理有:由,所以,又,所以又,所以.又所以有,把代入有:,解得或2,又直线不过右端点,所以,则,所以直线过定点.18、(1)(2)【解析】(1)根据得到,再结合为等比数列求出首项,进而求得数列的通项公式;(2)由(1)求得数列的通项公式,进而利用公式法即可求出【小问1详解】解:(1),,当时,,即,又,为等比数列,所以,,数列的通项公式为【小问2详解】(2)由(1)知,则,数列的前项和19、(1)(2)【解析】(1)解不等式求出集合、,然后根据交集的运算法则求交集;(2)解不等式求出集合、,求出,然后根据充分不必要性列出不等式组求解.【小问1详解】解:由题意得:当时,可解得集合的解集为由可解得或故.【小问2详解】的解集为又又“”是“x∈A”的充分不必要条件解得:,故实数a的取值范围20、(1)(2)过定点,定点为【解析】(1)根据离心率及顶点坐标求出即可得椭圆方程;(2)当直线斜率存在时,设直线的方程为(),求出的坐标,设是以为直径的圆上的点,利用向量垂直可得恒成立,可得定点,斜率不存在时验证即可.【小问1详解】由题意得,,,又因为,所以.所以椭圆C的方程为.【小问2详解】以为直径的圆过定点.理由如下:当直线斜率存在时,设直线的方程为().令,得,所以.由得,则或,所以.设是以为直径的圆上的任意一点,则,.由题意,,则以为直径的圆的方程为.即恒成立即解得故以为直径的圆恒过定点.当直线斜率不存在时,以为直径的圆也过点.综上,以为直径的圆恒过定点.21、(1)2;(2)存在,.【解析】(1)对函数求导,利用得的值;(2)讨论和分离参数,构造新函数求解最值即可求解【详解】解:(1),又由题意有(2)由(1)知,此时,由或,所以函数的单调减区间为和要恒成立,即①当时,,则要恒成立,令,再令,所以在内递减,所以当时,,故,所以在内递增,;②当时,lnx>0,则要恒成立,由①可知,当时,,所以内递增,所以当时,,故,所以在内递增,综合①②可得,即存在常数满足题意22、(1)an=n,bn=(2)证明见解析【解析】(1)设等差数列的公差为d,等比数列的公比为q,q>0,由等差数列和等比数列的通项公式及前n项和公式,列出方程组

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论