版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年广东省佛山市南海桂城中学高二上数学期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某学校的校车在早上6:30,6:45,7:00到达某站点,小明在早上6:40至7:10之间到达站点,且到达的时刻是随机的,则他等车时间不超过5分钟的概率是()A. B.C. D.2.已知抛物线,过点作抛物线的两条切线,点为切点.若的面积不大于,则的取值范围是()A. B.C. D.3.在正项等比数列中,和为方程的两根,则等于()A.8 B.10C.16 D.324.已知双曲线左右焦点为,,过的直线与双曲线的右支交于P,Q两点,且,若为以Q为顶角的等腰三角形,则双曲线的离心率为()A. B.C. D.5.我国古代的数学名著《九章算术》中有“衰分问题”:今有女子善织,日自倍,五日织五尺,问次日织几问?其意为:一女子每天织布的尺数是前一天的2倍,5天共织布5尺,请问第二天织布的尺数是()A. B.C. D.6.已知数列中,,则()A. B.C. D.7.某学校随机抽取了部分学生,对他们每周使用手机的时间进行统计,得到如下的频率分布直方图.则下列说法:①;②若抽取100人,则平均用时13.75小时;③若从每周使用时间在,,三组内的学生中用分层抽样的方法选取8人进行访谈,则应从使用时间在内的学生中选取的人数为3.其中正确的序号是()A.①② B.①③C.②③ D.①②③8.已知椭圆的两焦点分别为,,P为椭圆上一点,且,则的面积等于()A.6 B.C. D.9.若“”是“”的充分不必要条件,则实数m的值为()A.1 B.C.或1 D.或10.对任意实数,在以下命题中,正确的个数有()①若,则;②若,则;③若,则;④若,则A. B.C. D.11.的展开式中的系数是()A.1792 B.C.448 D.12.已知四面体,所有棱长均为2,点E,F分别为棱AB,CD的中点,则()A.1 B.2C.-1 D.-2二、填空题:本题共4小题,每小题5分,共20分。13.与圆外切于原点,且被y轴截得的弦长为8的圆的标准方程为__________14.已知函数,若,则________.15.若双曲线的一条渐近线的倾斜角为,则双曲线的离心率为___________.16.已知命题恒成立;,若p,均为真,则实数a的取值范围__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)动点M到点的距离比它到直线的距离小,记M的轨迹为曲线C.(1)求C的方程;(2)已知圆,设P,A,B是C上不同的三点,若直线PA,PB均与圆D相切,若P的纵坐标为,求直线AB的方程.18.(12分)已知椭圆的左焦点为F,右顶点为,M是椭圆上一点.轴且(1)求椭圆C的标准方程;(2)直线与椭圆C交于E,H两点,点G在椭圆C上,且四边形平行四边形(其中O为坐标原点),求19.(12分)设椭圆的左、右焦点分别为,,离心率为,短轴长为.(1)求椭圆的标准方程;(2)设左、右顶点分别为、,点在椭圆上(异于点、),求的值;(3)过点作一条直线与椭圆交于两点,过作直线的垂线,垂足为.试问:直线与是否交于定点?若是,求出该定点的坐标,否则说明理由.20.(12分)已知公差不为零的等差数列中,,且,,成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)若,求数列的前项和.21.(12分)设函数.(1)求函数的单调区间;(2)求函数的极值.22.(10分)某话剧表演小组由名学生组成,若从这名学生中任意选取人,其中恰有名男生的概率是.(1)求该小组中男、女生各有多少人?(2)若这名学生站成一排照相留念,求所有排法中男生不相邻的概率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求出小明等车时间不超过5分钟能乘上车的时长,即可计算出概率.【详解】6:40至7:10共30分钟,小明同学等车时间不超过5分钟能乘上车只能是6:40至6:45和6:55至7:00到站,共10分钟,所以所求概率为.故选:B2、C【解析】由题意,设,直线方程为,则由点到直线的距离公式求出点到直线的距离,再联立直线与抛物线方程,由韦达定理及弦长公式求出,进而可得,结合即可得答案.【详解】解:因为抛物线的性质:在抛物线上任意一点处的切线方程为,设,所以在点处的切线方程为,在点B处的切线方程为,因为两条切线都经过点,所以,,所以直线的方程为,即,点到直线的距离为,联立直线与抛物线方程有,消去得,由得,,由韦达定理得,所以弦长,所以,整理得,即,解得,又所以.故选:C.3、C【解析】根据和为方程两根,得到,然后再利用等比数列的性质求解.【详解】因为和为方程的两根,所以,又因为数列是等比数列,所以,故选:C4、C【解析】由双曲线的定义得出中各线段长(用表示),然后通过余弦定理得出的关系式,变形后可得离心率【详解】由题意,又,所以,从而,,,中,,中.,所以,,所以,故选:C5、C【解析】根据等比数列求和公式求出首项即可得解.【详解】由题可得该女子每天织布的尺数成等比数列,设其首项为,公比为,则,解得所以第二天织布的尺数为.故选:C6、D【解析】由数列的递推公式依次去求,直到求出即可.【详解】由,可得,,,故选:D.7、B【解析】根据频率分布直方图中小矩形的面积和为1可求出,再求出频率分布直方图的平均值,即为抽取100人的平均值的估计值,再利用分层抽样可确定出使用时间在内的学生中选取的人数为3.【详解】,故①正确;根据频率分布直方图可估计出平均值为,所以估计抽取100人的平均用时13.75小时,②的说法太绝对,故②错误;每周使用时间在,,三组内的学生的比例为,用分层抽样的方法选取8人进行访谈,则应从使用时间在内的学生中选取的人数为,故③正确.故选:B.8、B【解析】根据椭圆定义和余弦定理解得,结合三解形面积公式即可求解【详解】由与是椭圆上一点,∴,两边平方可得,即,由于,,∴根据余弦定理可得,综上可解得,∴的面积等于,故选:B9、B【解析】利用定义法进行判断.【详解】把代入,得:,解得:或.当时,可化为:,解得:,此时“”是“”的充要条件,应舍去;当时,可化为:,解得:或,此时“”是“”的充分不必要条件.故.故选:B10、B【解析】直接利用不等式的基本性质判断.【详解】①因为,则,根据不等式性质得,故正确;②当时,,而,故错误;③因为,所以,即,故正确;④当时,,故错误;故选:B11、D【解析】根据二项式展开式的通项公式计算出正确答案.【详解】的展开式中,含的项为.所以的系数是.故选:D12、D【解析】在四面体中,取定一组基底向量,表示出,,再借助空间向量数量积计算作答.【详解】四面体所有棱长均为2,则向量不共面,两两夹角都为,则,因点E,F分别为棱AB,CD的中点,则,,,所以.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、;【解析】设所求圆的圆心为,根据两圆外切于原点可知两圆心与原点共线,再根据弦长列出方程组求出即可.【详解】设所求圆的圆心为,因为圆的圆心为,与原点连线的斜率为,又所求圆与已知圆外切于原点,,①所以所求圆的半径满足,又被y轴截得的弦长为8,②由①②解得,所以圆的方程为.故答案为:14、【解析】求出导函数,确定导函数奇函数,然后可求值【详解】由已知,它是奇函数,∴故答案为:【点睛】本题考查导数的运算,考查函数的奇偶性,确定函数的奇偶性是解题关键15、2【解析】利用双曲线的渐近线的倾斜角,求解,关系,然后求解离心率,即可求解.【详解】双曲线一条渐近线的倾斜角为,可得,所以,所以双曲线的离心率为.故答案为:2.16、【解析】根据题意得到命题为真命题,为假命题,结合二次函数的图象与性质,即可求解.【详解】根据题意,命题,均为真命题,可得命题为真命题,为假命题,由命题恒成立,可得,解得;又由命题为假命题,可得,解得,所以,即实数a的取值范围为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由抛物线的定义可得结论;(2)设,得PA的两点式方程为,由在抛物线上,化简直线方程为,然后由圆心到切线的距离等于半径得出的关系式,并利用得出点满足的等式,同理设得方程,最后由直线方程的定义可得直线方程【小问1详解】由题意得动点M到点的距离等于到直线的距离,所以曲线C是以为焦点,为准线的抛物线.设,则,于是C的方程为.【小问2详解】由(1)可知,设,PA的两点式方程为.由,,可得.因为PA与D相切,所以,整理得.因为,可得.设,同理可得于是直线AB的方程为.18、(1)(2)【解析】(1)根据椭圆的简单几何性质即可求出;(2)设,联立与椭圆方程,求出,再根据平行四边形的性质求出点的坐标,然后由点G在椭圆C上,可求出,从而可得【小问1详解】∵椭圆C的右顶点为,∴,∵轴,且,∴,∴,所以椭圆C的标准方程为【小问2详解】设,将直线代入,消去y并整理得,由,得.(*)由根与系数的关系可得,∴,∵四边形为平行四边形,∴,得,将G点坐标代人椭圆C的方程得,满足(*)式∴19、(1);(2);(3)是,.【解析】(1)由题意,列出所满足的等量关系式,结合椭圆中的关系,求得,从而求得椭圆的方程;(2)写出,设,利用斜率坐标公式求得两直线斜率,结合点在椭圆上,得出,从而求得结果;(3)设直线的方程为:,,则,联立方程可得:,结合韦达定理,得到,结合直线的方程,得到直线所过的定点坐标.【详解】(1)由题意可知,,又,所以,所以椭圆的标准方程为:.(2),设,因为点在椭圆上,所以,,又,.(3)设直线的方程为:,,则,联立方程可得:,所以,所以,又直线的方程为:,令,则,所以直线恒过,同理,直线恒过,即直线与交于定点.【点睛】思路点睛:该题考查是有关椭圆的问题,解题思路如下:(1)根据题中所给的条件,结合椭圆中的关系,建立方程组求得椭圆方程;(2)根据斜率坐标公式,结合点在椭圆上,整理求得斜率之积,可以当结论来用;(3)将直线与椭圆方程联立,结合韦达定理,结合直线方程,求得其过的定点.20、(1)(2)【解析】(Ⅰ)将数列中的项用和表示,根据等比数列的性质可得到关于的一元二次方程可求得的值,即可得到数列的通项公式;(Ⅱ)根据(Ⅰ)可求得的通项公式,用分组求和法可得其前项和.试题解析:(Ⅰ)设等差数列的公差为,因,且,,成等比数列,即,,成等比数列,所以有,即,解得或(舍去),所以,,数列的通项公式为.(Ⅱ)由(Ⅰ)知,所以.点睛:本题主要考查了等差数列,等比数列的概念,以及数列的求和,属于高考中常考知识点,难度不大;常见的数列求和的方法有公式法即等差等比数列求和公式,分组求和类似于,其中和分别为特殊数列,裂项相消法类似于,错位相减法类似于,其中为等差数列,为等比数列等.21、(1)单调递减区间为和,单调递增区间为(2)极小值,极大值为【解析】(1)先对函数求导,然后根据导数的正负可求出函数的单调区间,(2)根据(1)中求得单调区间可求出函数的极值【小问1详解】.当变化时,,的变化情况如下表所示:00减极小值增极大值减的单调递减区间为和,单调递增区间为.【小问2详解】由(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 特选2024年度人力资源外包服务合同
- 2024年度赞助合同电影制片方与品牌商之间的产品植入合同
- 专属欧派橱柜品质保证购买合同2024版版B版
- 专职司机2024年度聘用协议样本版B版
- 专用协议补充指南:2024版模板版B版
- 个人住宅租赁合作细则合同(2024年版)版
- 专业市场招商服务协议(2024版)版B版
- 市第五医院发表论文审批单
- 2025年环保型不锈钢管材购销合同范本3篇
- 2024年物资集中采购协议
- 生产安全事故事件管理知识培训课件
- 项目施工单位与当地政府及村民的协调措施
- 浙江省宁波市宁海县2023-2024学年三年级上学期语文期末试卷
- 广东省广州海珠区2023-2024学年八年级上学期期末数学试卷(含答案)
- 肿瘤科患者安全管理
- 2025届湖北省高三上学期12月联考语文试题
- 国家开放大学《Photoshop图像处理》章节测试题参考答案
- 飞行原理(第二版) 课件 第10章 高速空气动力学基础
- 广西《乳腺X射线数字化体层摄影诊疗技术操作规范》
- 江苏省南京市2023-2024学年高一上学期物理期末试卷(含答案)
- 山西省2024年中考道德与法治真题试卷(含答案)
评论
0/150
提交评论