




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.2.1排列(二)复习巩固
从n个不同元素中,任取m()个元素(m个元素不可重复取)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.
1、排列的定义:2.排列数的定义:从n个不同元素中,任取m()个元素的所有排列的个数叫做从n个元素中取出m个元素的排列数3.全排列的定义:n个不同元素全部取出的一个排列,叫做n个不同元素的一个全排列.(3)全排列数公式:4.有关公式:(2)排列数公式:1.计算:(1)(2)课堂练习2.从4种蔬菜品种中选出3种,分别种植在不同土质的3块土地上进行试验,有
种不同的种植方法?4.信号兵用3种不同颜色的旗子各一面,每次打出3面,最多能打出不同的信号有()3.从参加乒乓球团体比赛的5名运动员中选出3名进行某场比赛,并排定他们的出场顺序,有
种不同的方法?例1、某年全国足球甲级A组联赛共有14个队参加,每队要与其余各队在主、客场分别比赛一次,共进行多少场比赛?解:14个队中任意两队进行1次主场比赛与1次客场比赛,对应于从14个元素中任取2个元素的一个排列,因此,比赛的总场次是例2、有5本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法?
例3:某信号兵用红,黄,蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?例4:用0到9这10个数字,可以组成多少个没有重复数字的三位数?百位十位个位解法一:对排列方法分步思考。从位置出发解法二:对排列方法分类思考。符合条件的三位数可分为两类:百位十位个位0百位十位个位0百位十位个位根据加法原理从元素出发分析解法三:间接法.从0到9这十个数字中任取三个数字的排列数为,∴所求的三位数的个数是其中以0为排头的排列数为.逆向思维法百位十位个位千位万位例5:由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有多少个?有约束条件的排列问题百位十位个位千位万位例5:由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有多少个?有约束条件的排列问题有约束条件的排列问题例6:6个人站成前后两排照相,要求前排2人,后排4人,那么不同的排法共有()A.30种B.360种C.720种D.1440种C几种重要的解题方法(1)三个男生,四个女生排成一排,甲不能在中间,也不在两头,有几种不同方法?变式:甲只能在中间或两头,有几种不同排法?找位置:找位置:(2)三个男生,四个女生排成一排,甲不在最左,乙不在最右,有几种不同方法?方法一:方法二:(3)三个男生,四个女生排成一排,男生、女生各站一起,有几种不同方法?变式:〈1〉男生之间、女生之间不相邻,有几种不同排法?变式:〈3〉甲、乙、丙三人的次序不变,有几种不同排法?捆绑法:除甲乙丙外的4个人:在7个位置中找4个排列插空法:变式:
〈2〉如果有两个男生、四个女生排成一排,要求男生之间不相邻,有几种不同排法?插空法:(4)三个男生,四个女生排成两排,前排三人、后排四人,有几种不同排法?思考:七个人可以在前后两排随意就坐,再无其他条件,所以?两排可看作一排来处理不同的坐法有种小结:1.对有约束条件的排列问题,应注意如下类型:⑴某些元素不能在或必须排列在某一位置;⑵某些元素要求连排(即必须相邻);⑶某些元素要求分离(即不能相邻);2.基本的解题方法:(1)有特殊元素或特殊位置的排列问题,通常是先排特殊元素或特殊位置,称为优先处理特殊元素(位置)法(优限法);特殊元素,特殊位置优先安排策略(2)某些元素要求必须相邻时,可以先将这些元素看作一个元素,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为“捆绑法”;相邻问题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025股东之间的股权转让合同范本
- 2025标准个人售房合同协议书
- 2025跨国服务贸易合同规范
- 2025存量房买卖的合同样本
- 2025天津市经济适用住房买卖合同
- 2025大连煤炭产品代理合同范本
- 2025届毕业生签订就业协议应注意合同细节
- 2025《基站建设合同施工》
- 2025年趸购电合同示范文本及范例
- 2025授权炒股合同示例
- 《计算机发展史》课件
- 2025年安徽芜湖市阳光电力维修工程有限责任公司招聘笔试参考题库附带答案详解
- 人教版英语七年级下册知识讲义Unit 1 section A (教师版)
- 快开门式压力容器操作人员培训
- 2024-2025学年统编版语文八年级上册期末易错题:现代文阅读(记叙文)(含答案)
- 手术分级管理制度
- 2025年江苏宿迁经济技术开发区人力资源有限公司招聘笔试参考题库附带答案详解
- 2025-2030年中国聚氨酯产业市场风险评估规划研究报告
- 学校食堂每日食品安全检查记录台账(日管控)
- 2025年四川三新供电服务公司招聘笔试参考题库含答案解析
- 《ERP总体介绍》课件
评论
0/150
提交评论