烟台市重点中学2024届数学八上期末学业水平测试试题含解析_第1页
烟台市重点中学2024届数学八上期末学业水平测试试题含解析_第2页
烟台市重点中学2024届数学八上期末学业水平测试试题含解析_第3页
烟台市重点中学2024届数学八上期末学业水平测试试题含解析_第4页
烟台市重点中学2024届数学八上期末学业水平测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

烟台市重点中学2024届数学八上期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.在平面直角坐标系中,点M(-1,3)关于x轴对称的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.下列整式的运算中,正确的是()A. B.C. D.3.计算:21+79=()A.282.6 B.289 C.354.4 D.3144.在,0,,﹣,0.1010010001…(相邻两个1之间的0的个数逐渐增加1)这六个数中,无理数的个数共有()A.2个 B.3个 C.4个 D.5个5.老师随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图,其中条形图被墨迹遮盖了一部分,则条形图中被遮盖的数是()A.5 B.9 C.15 D.226.若,则的值是A. B. C. D.7.如图,在平行四边形中,,点,分别是,的中点,则等于()A.2 B.3 C.4 D.58.下列四个标志是关于安全警示的标志,在这些标志中,是轴对称图形的是()A. B.C. D.9.下列命题是真命题的是()A.直角三角形中两个锐角互补 B.相等的角是对顶角C.同旁内角互补,两直线平行 D.若,则10.如图,在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足为D、E,F分别是CD,AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF的度数为()A.62° B.38° C.28° D.26°11.如图,点A的坐标为(8,0),点B为y轴负半轴上的一动点,分别以OB,AB为直角边在第三、第四象限作等腰直角三角形OBF,等腰直角三角形ABE,连接EF交y轴与P点,当点B在y轴上移动时,则PB的长度是()A.2 B.4 C.不是已知数的定值 D.PB的长度随点B的运动而变化12.化简的结果是()A. B. C. D.1二、填空题(每题4分,共24分)13.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB=____.14.如图,在四边形中,,,,,且,则四边形的面积是______.15.如图,由两个直角三角形和三个正方形组成的图形,已知,其中阴影部分面积是_____________平方单位.16.点M(3,﹣1)到x轴距离是_____.17.如图,将等腰绕底角顶点A逆时针旋转15°后得到,如果,那么两个三角形的重叠部分面积为____.18.计算的结果为_______.三、解答题(共78分)19.(8分)证明:最长边上的中线等于最长边的一半的三角形是直角三角形.20.(8分)小明和小华的年龄相差10岁.今年,小明的年龄比小华年龄的2倍大;两年后,小华的年龄比小明年龄的大.试问小明和小华今年各多少岁?21.(8分)计算:(1)(2)(3)(4)解分式方程:22.(10分)在社会主义新农村建设中,某乡镇决定对一段公路进行改造,已知这项工程由甲工程队单独做需要40天完成;如果由乙工程先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数;(2)求两队合作完成这项工程所需的天数.23.(10分)如图所示,在等腰三角形ABC中,AB=AC,AD是△ABC的角平分线,E是AC延长线上一点.且CE=CD,AD=DE.(1)求证:ABC是等边三角形;(2)如果把AD改为ABC的中线或高、其他条件不变),请判断(1)中结论是否依然成立?(不要求证明)24.(10分)(尺规作图,保留作图痕迹,不写作法)如图,已知:△ABC(其中∠B>∠A).(1)在边AC上作点D,使∠CDB=2∠A;(2)在(1)的情况下,连接BD,若CB=CD,∠A=35°,则∠C的度数为.25.(12分)如图,工厂和工厂,位于两条公路之间的地带,现要建一座货物中转站,若要求中转站到两条公路的距离相等,且到工厂和工厂的距离也相等,请用尺规作出点的位置.(不要求写做法,只保留作图痕迹)26.进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与指挥官的一段对话:记者:你们是用天完成米长的大坝加固任务的,真了不起!指挥官:我们加固米后,采用新的加固模式,这样每天加固长度是原来的倍.通过对话,请你求出该地驻军原来每天加固多少米?

参考答案一、选择题(每题4分,共48分)1、C【解题分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得点的坐标,再根据点的坐标确定所在象限.【题目详解】点M(-1,3)关于x轴对称的点坐标为(-1,-3),在第三象限,故选C.【题目点拨】本题考查的是关于x轴、y轴对称的点的坐标,熟练掌握关于x轴对称点的坐标特点是解题的关键.2、D【分析】根据同底数幂的乘法,积的乘方,幂的乘方逐一判断即可.【题目详解】解:A、,故A错误;B、,故B错误;C、与不是同类项,不能合并,故C错误;D、,正确,故答案为:D.【题目点拨】本题考查了底数幂的乘法,积的乘方,幂的乘方,解题的关键是掌握幂的运算法则.3、D【分析】利用乘法分配律即可求解.【题目详解】原式=故选:D.【题目点拨】本题主要考查乘法运算律在实数运算中的应用,掌握乘法分配律是解题的关键.4、A【解题分析】根据无理数的定义对每个数进行判断即可.【题目详解】在,1,,﹣,1.1111111111…(相邻两个1之间的1的个数逐渐增加1)这六个数中,无理数有:,1.1111111111…(相邻两个1之间的1的个数逐渐增加1)共2个.故选:A.【题目点拨】本题考查了无理数的定义,掌握无理数的定义以及判定方法是解题的关键.5、B【分析】条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.【题目详解】课外书总人数:6÷25%=24(人),看5册的人数:24﹣5﹣6﹣4=9(人),故选B.【题目点拨】本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.6、C【解题分析】∵,∴b=a,c=2a,则原式.故选C.7、A【分析】根据平行四边形的性质和三角形中位线定理,即可得到答案.【题目详解】解:∵是平行四边形,∴,∵点,分别是,的中点,∴是△BCD的中位线,∴;故选:A.【题目点拨】本题考查了平行四边形的性质和三角形的中位线定理,解题的关键是熟练掌握所学的知识进行解题.8、B【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴可得答案.【题目详解】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.【题目点拨】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.9、C【分析】分别利用直角三角形的性质、对顶角和平行线的判定方法以及绝对值的性质分析得出答案.【题目详解】解:A、直角三角形中两个锐角互余,故此选项错误;

B、相等的角不一定是对顶角,故此选项错误;

C、同旁内角互补,两直线平行,正确;

D、若|a|=|b|,则a=±b,故此选项错误;

故选C.【题目点拨】此题主要考查了命题与定理,正确把握相关性质是解题关键.10、C【解题分析】分析:主要考查:等腰三角形的三线合一,直角三角形的性质.注意:根据斜边和直角边对应相等可以证明△BDF≌△ADE.详解:∵AB=AC,AD⊥BC,∴BD=CD.又∵∠BAC=90°,∴BD=AD=CD.又∵CE=AF,∴DF=DE,∴Rt△BDF≌Rt△ADE(SAS),∴∠DBF=∠DAE=90°﹣62°=28°.故选C.点睛:熟练运用等腰直角三角形三线合一性质、直角三角形斜边上的中线等于斜边的一半是解答本题的关键.11、B【分析】作EN⊥y轴于N,求出∠NBE=∠BAO,证△ABO≌△BEN,求出∠OBF=∠FBP=∠BNE=90°,证△BFP≌△NEP,推出BP=NP,即可得出答案.【题目详解】解:如图,作EN⊥y轴于N,

∵∠ENB=∠BOA=∠ABE=90°,

∴∠OBA+∠NBE=90°,∠OBA+∠OAB=90°,

∴∠NBE=∠BAO,

在△ABO和△BEN中,,∴△ABO≌△BEN(AAS),

∴OB=NE=BF,

∵∠OBF=∠FBP=∠BNE=90°,

在△BFP和△NEP中,,∴△BFP≌△NEP(AAS),

∴BP=NP,

又∵点A的坐标为(8,0),

∴OA=BN=8,

∴BP=NP=4,

故选:B.【题目点拨】本题考查了全等三角形的性质和判定,坐标与图形性质等知识点的应用,主要考查学生综合运用性质进行推理和计算的能力,有一定的难度,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应角相等,对应边相等.12、B【分析】按照同分母分式的减法运算法则进行计算,分母不变,分子相减,结果能约分要约分成最简分式.【题目详解】解:故选:B.【题目点拨】本题考查同分母分式的加减法,题目比较基础,掌握运算法则正确因式分解将计算结果进行约分是解题关键.二、填空题(每题4分,共24分)13、105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【题目详解】如图,∠ECD=45°,∠BDC=60°,∴∠COB=∠ECD+∠BDC=45°+60°=105°.故答案为:105°.【题目点拨】此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.14、1【分析】连接BD,如图,在△ABD中,根据勾股定理可得BD的长,然后根据勾股定理的逆定理可判断△BDC是直角三角形,然后根据S四边形=计算即可.【题目详解】解:连接BD,如图,在△ABD中,∵,,,∴,∵,∴∠BDC=90°,∴S四边形=.故答案为:1.【题目点拨】本题考查了勾股定理及其逆定理以及三角形的面积等知识,属于基本题型,熟练掌握勾股定理及其逆定理是解答的关键.15、49【分析】先计算出BC的长,再由勾股定理求出阴影部分的面积即可.【题目详解】∵∠ACB=90,,∴,∴阴影部分的面积=,故答案为:49.【题目点拨】此题考查勾股定理,能利用根据直角三角形计算得到所需的边长,题中根据勾股定理的图形得到阴影部分面积等于BC的平方是解题的关键.16、1【分析】点到x轴的距离是该点纵坐标的绝对值,根据点坐标即可得到答案.【题目详解】解:M(3,﹣1)到x轴距离是1.故答案为:1.【题目点拨】此题考查点到坐标轴的距离,正确理解距离与点坐标的关系是解题的关键.17、【分析】设B′C′与AB相交于点D,根据等腰直角三角形的性质可得∠BAC=45°,根据旋转角可得∠CAC′=15°,然后求出∠C′AD=30°,根据30°角所对的直角边等于斜边的一半可得AD=2C′D,然后利用勾股定理列式求出C′D的长度,再根据三角形的面积公式列式进行计算即可得解.【题目详解】设B′C′与AB相交于点D,如图,在等腰直角△ABC中,∠BAC=45°,∵旋转角为15°,∴∠CAC′=15°,∴∠C′AD=∠BAC-∠CAC′=45°-15°=30°,∴AD=2C′D,在Rt△AC′D中,根据勾股定理,AC′2+C′D2=AD2,即12+C′D2=4C′D2,解得C′D=,∴重叠部分的面积=.故答案为:.【题目点拨】本题考查了旋转的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理的应用,熟练掌握旋转的性质是解题的关键.18、1【分析】根据平方差公式即可求解.【题目详解】=8-2=1故答案为:1.【题目点拨】此题主要考查二次根式的运算,解题的关键是熟知二次根式的运算法则.三、解答题(共78分)19、证明见解析.【分析】如图,在△ABC中,AB是最长边,CD是边AB的中线,可得,再根据最长边上的中线等于最长边的一半可得,根据等边对等角以及三角形内角和定理即可得证.【题目详解】证明:如图,在△ABC中,AB是最长边,CD是边AB的中线∵CD是边AB的中线∴∵最长边上的中线等于最长边的一半∴∴∵∴∴△ABC是直角三角形∴最长边上的中线等于最长边的一半的三角形是直角三角形.【题目点拨】本题考查了直角三角形的证明问题,掌握直角三角形的性质、等边对等角、三角形内角和定理、中线的性质是解题的关键.20、小明和小华今年分别为19岁和9岁.【分析】根据题目中的两组不等关系,列出不等式组进行求解.【题目详解】解:设小华今年的年龄为岁,则小明今年的年龄为岁.依题意有:,解得,∴不等式组的解集为,又为整数,故=9,答:小明和小华今年分别为19岁和9岁.【题目点拨】本题考查一元一次不等式组的应用,根据题意列出不等式是关键.21、(1);(2);(3)0;(4)是该方程的根.【分析】(1)适当变形后,利用平方差公式()计算即可;(2)首先计算积的乘方()和幂的乘方(),然后从左到右依次计算即可;(3)分别化简二次根式、绝对值,计算零指数幂()和负指数幂((a≠0,n为整数)),然后进行二次根式的加减运算;(4)去分母后将分式方程化为整式方程,然后求解整式方程,验根,写出答案.【题目详解】解:(1)原式;(2)原式===;(3)原式===0;(4)去分母得:,去括号得:,移项,合并同类项得:,解得.经检验是该方程的根.【题目点拨】本题考查平方差公式,整式的乘除混合运算,实数的混合运算,解分式方程.(1)中熟记平方差公式并能灵活运用是解题关键;(2)中需注意在本题计算整式的乘除混合运算时,从左到右依次运算;(3)中需注意在化简绝对值后,要先将绝对值化为普通括号,以防出现符号错误;(4)中注意分式方程一定要验根.22、(1)60(2)24【分析】本题主要考查分式方程的应用.等量关系为:工作时间=工作总量÷工作效率,根据题意可得出:甲队的总工作量+乙队的总工作量=1,由此可列出方程求解.【题目详解】解:(1)设乙工程队单独完成这项工程需要x天,根据题意得:解之得:x=60,经检验:x=60是原方程的解.所以乙工程队单独完成这项工程所需的天数为60天.(2)设两队合做完成这项工程所需的天数为y天,根据题意得:()y=1,解之得:y=24,所以两队合做完成这项工程所需的天数为24天.23、(1)见解析;(2)成立【分析】(1)根据等腰三角形的性质可得,角平分线AD同时也是三角形ABC底边BC的高,即∠ADC=90°.再加上已知条件可推出∠DAC=30°,即可知三角形ABC是等边三角形.(2)在等腰三角形ABC中,如果其他条件不变,则AD同时是角平分线、中线及高,所以(1)中结论仍然成立.【题目详解】(1)证明:∵CD=CE,∴∠E=∠CDE,

∴∠ACB=2∠E.

又∵AD=DE,∴∠E=∠DAC,

∵AD是△ABC的角平分线,

∴∠BAC=2∠DAC=2∠E,

∴∠ACB=∠BAC,∴BA=BC.

又∵AB=AC,∴AB=BC=AC.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论