版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省惠民县2024届八上数学期末复习检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.化简的结果是()A. B. C. D.2.正五边形ABCDE中,∠BEC的度数为()
A.18° B.30° C.36° D.72°3.已知,一次函数和的图像如图,则下列结论:①k<0;②a>0;③若≥,则≤3,则正确的个数是()A.0个 B.1个 C.2个 D.3个4.已知A(x1,3),B(x2,12)是一次函数y=﹣6x+10的图象上的两点,则下列判断正确的是()A. B.C. D.以上结论都不正确5.下面的计算中,正确的是()A. B. C. D.6.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用,表示直角三角形的两直角边(),下列四个说法:①,②,③,④.其中说法正确的是()A.①② B.①②③ C.①②④ D.①②③④7.代数之父——丢番图(Diophantus)是古希腊的大数学家,是第一位懂得使用符号代表数来研究问题的人.丢番图的墓志铭与众不同,不是记叙文,而是一道数学题.对其墓志铭的解答激发了许多人学习数学的兴趣,其中一段大意为:他的一生幼年占,青少年占,又过了才结婚,5年后生子,子先父4年而卒,寿为其父之半.下面是其墓志铭解答的一种方法:解:设丢番图的寿命为x岁,根据题意得:,解得.∴丢番图的寿命为84岁.这种解答“墓志铭”体现的思想方法是()A.数形结合思想 B.方程思想 C.转化思想 D.类比思想8.点M(3,-4)关于y轴的对称点的坐标是()A.(3,4) B.(-3,4) C.(-3,-4) D.(-4,3)9.如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B的路径AMNB最短的是(假定河的两岸是平行直线,桥要与河岸垂直)()A. B. C. D.10.在一次函数y=(2m﹣1)x+1中,y的值随着x值的增大而减小,则它的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(每小题3分,共24分)11.在实数π、、﹣、、0.303003…(相邻两个3之间依次多一个0)中,无理数有_____个.12.阅读理解:引入新数,新数满足分配律,结合律,交换律.已知,那么________.13.如图是高空秋千的示意图,小明从起始位置点A处绕着点O经过最低点B,最终荡到最高点C处,若∠AOC=90°,点A与点B的高度差AD=1米,水平距离BD=4米,则点C与点B的高度差CE为_____米.14.如图,已知△ABC是等边三角形,D是AC边上的任意一点,点B,C,E在同一条直线上,且CE=CD,则∠E=_____度.15.若正多边形的一个内角等于,则这个多边形的边数是__________.16.命题“全等三角形的面积相等”的逆命题是__________17.一个多边形的内角和是1980°,则这个多边形的边数是__________.18.当x______时,分式有意义.三、解答题(共66分)19.(10分)如图,点D是△ABC的BC边上的一点,且∠1=∠2,∠3=∠4,∠BAC=66°,求∠DAC的度数.20.(6分)“构造图形解题”,它的应用十分广泛,特别是有些技巧性很强的题目,如果不能发现题目中所隐含的几何意义,而用通常的代数方法去思考,经常让我们手足无措,难以下手,这时,如果能转换思维,发现题目中隐含的几何条件,通过构造适合的几何图形,将会得到事半功倍的效果,下面介绍两则实例:实例一:1876年,美国总统伽非尔德利用实例一图证明了勾股定理:由S四边形ABCD=S△ABC+S△ADE+S△ABE得,化简得:实例二:欧几里得的《几何原本》记载,关于x的方程的图解法是:画Rt△ABC,使∠ABC=90°,BC=,AC=,再在斜边AB上截取BD=,则AD的长就是该方程的一个正根(如实例二图)请根据以上阅读材料回答下面的问题:(1)如图1,请利用图形中面积的等量关系,写出甲图要证明的数学公式是,乙图要证明的数学公式是(2)如图2,若2和-8是关于x的方程x2+6x=16的两个根,按照实例二的方式构造Rt△ABC,连接CD,求CD的长;(3)若x,y,z都为正数,且x2+y2=z2,请用构造图形的方法求的最大值.21.(6分)(1)如图是用4个全等的长方形拼成的一个“回形”正方形,图中阴影部分面积用2种方法表示可得一个等式,这个等式为______.(2)若,,求的值.22.(8分)某公司在甲、乙仓库共存放某种原料450吨,如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨.(1)求甲、乙两仓库各存放原料多少吨;(2)现公司需将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a元吨(10≤a≤30),从乙仓库到工厂的运价不变,设从甲仓库运m吨原料到工厂,请求出总运费W关于m的函数解析式(不要求写出m的取值范围);(3)在(2)的条件下,请根据函数的性质说明:随着m的增大,W的变化情况.23.(8分)已知2a+1的平方根是±3,3a+2b-4的立方根是-2,求4a-5b+8的立方根.24.(8分)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F,(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=1,CF=2时,求AC的长.25.(10分)已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.(1)如图1,求证:AE=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.26.(10分)如图,在中,,,的垂直平分线交于点,交于点,,连接.(1)求证:是直角三角形;(2)求的面积.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据分式的除法法则,即可得到答案.【题目详解】原式====,故选D.【题目点拨】本题主要考查分式的除法法则,掌握分式的约分,是解题的关键.2、C【分析】根据正五边形的性质和内角和为540°,得到△ABE≌△DCE,先求出∠BEA和∠CED的度数,再求∠BEC即可.【题目详解】解:根据正五边形的性质可得AB=AE=CD=DE,∠BAE=∠CDE=108°,∴△ABE≌△DCE,∴∠BEA=∠CED=(180°﹣108°)=36°,∴∠BEC=108°-36°-36°=36°,故选:C.【题目点拨】本题考查了正多边形的性质和内角和,全等三角形的判定,等腰三角形的性质,证明△ABE≌△DCE是解题关键.3、C【分析】根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x3时,y1图象在y2的图象的上方.【题目详解】根据图示及数据可知:
①y1=kx+b的图象经过一、二四象限,则k<0,故①正确;
②y2=x+a的图象与y轴的交点在x轴的下方,a<0,故②错误;
③当x3时,y1图象在y2的图象的上方,则y1y2,故③正确.
综上,正确的个数是2个.
故选:C.【题目点拨】本题考查了一次函数的图象,考查学生的分析能力和读图能力,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.4、B【分析】根据一次函数y=−6x+10图象的增减性,以及点A和点B的纵坐标的大小关系,即可得到答案.【题目详解】解:∵一次函数y=−6x+10的图象上的点y随着x的增大而减小,且3<12,∴x1>x2,故选B.【题目点拨】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.5、B【分析】直接利用积的乘方运算法则、幂的乘方法则以及同底数幂的乘法运算法则分别计算得出答案.【题目详解】解:A、b4•b4=b8,故此选项错误;
B、x3•x3=x6,正确;
C、(a4)3•a2=a14,故此选项错误;
D、(ab3)2=a2b6,故此选项错误;
故选:B.【题目点拨】此题主要考查了积的乘方运算、幂的乘方和同底数幂的乘法运算,正确掌握相关运算法则是解题关键.6、B【题目详解】可设大正方形边长为a,小正方形边长为b,所以据题意可得a2=49,b2=4;根据直角三角形勾股定理得a2=x2+y2,所以x2+y2=49,式①正确;因为是四个全等三角形,所以有x=y+2,所以x-y=2,式②正确;根据三角形面积公式可得S△=xy/2,而大正方形的面积也等于四个三角形面积加上小正方形的面积,所以,化简得2xy+4=49,式③正确;而据式④和式②得2x=11,x=5.5,y=3.5,将x,y代入式①或③都不正确,因而式④不正确.综上所述,这一题的正确答案为B.7、B【分析】根据解题方法进行分析即可.【题目详解】根据题意,可知这种解答“墓志铭”的方法是利用设未知数,根据已经条件列方程求解,体现的思想方法是方程思想,故选:B.【题目点拨】本题考查了解题思想中的方程思想,掌握知识点是解题关键.8、C【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,即点P(x,y)关于y轴的对称点P′的坐标是(−x,y).【题目详解】∵点M(3,−4),∴关于y轴的对称点的坐标是(−3,−4).故选:C.【题目点拨】此题主要考查了关于x轴、y轴对称点的坐标特点,熟练掌握关于坐标轴对称的特点是解题关键.9、D【分析】过A作河岸的垂线AH,在直线AH上取点I,使AI等于河宽,连接BI即可得出N,作出MN⊥a即可得到M,连接AM即可.【题目详解】解:根据河的两岸是平行直线,桥要与河岸垂直可知,只要AM+BN最短就符合题意,即过A作河岸a的垂线AH,垂足为H,在直线AH上取点I,使AI等于河宽.连结IB交河岸b于N,作MN垂直于河岸交河岸a于M点,连接AM.故选D.【题目点拨】本题考查了最短路线问题以及三角形三边关系定理的应用,关键是找出M、N的位置.10、C【分析】由y的值随着x值的增大而减小可得出2m﹣1<1,再利用b=1>1,可得出一次函数y=(2m﹣1)x+1的图象与y轴交点在其正半轴上,进而可得出一次函数y=(2m﹣1)x+1的图象不经过第三象限.【题目详解】解:∵在一次函数y=(2m﹣1)x+1中,y的值随着x值的增大而减小,∴2m﹣1<1.∵2m﹣1<1,1>1,∴一次函数y=(2m﹣1)x+1的图象经过第一、二、四象限,∴一次函数y=(2m﹣1)x+1的图象不经过第三象限.故选:C.【题目点拨】本题考查了一次函数图象与系数的关系,即在一次函数y=kx+b(k≠1)中,①k>1,b>1⇔y=kx+b的图象在一、二、三象限;②k>1,b<1⇔y=kx+b的图象在一、三、四象限;③k<1,b>1⇔y=kx+b的图象在一、二、四象限;④k<1,b<1⇔y=kx+b的图象在二、三、四象限.二、填空题(每小题3分,共24分)11、3【分析】根据无理数的概念,即可求解.【题目详解】无理数有:π、、1.313113…(相邻两个3之间依次多一个1)共3个.故答案为:3【题目点拨】本题主要考查无理数的概念,掌握“无限不循环小数是无理数”是解题的关键.12、2【分析】根据定义即可求出答案.【题目详解】由题意可知:原式=1-i2=1-(-1)=2故答案为2【题目点拨】本题考查新定义型运算,解题的关键是正确理解新定义.13、4.1【分析】如图(见解析),过点A作,过点C作,先利用勾股定理求出OA的长,再根据三角形全等的判定定理与性质求出OG的长,最后根据线段的和差即可得.【题目详解】如图,过点A作,过点C作,则四边形ADBH和四边形CEBG都是矩形由题意得,由矩形的性质得,在中,,即则,解得又则(米)故答案为:4.1.【题目点拨】本题考查了勾股定理、三角形全等的判定定理与性质、矩形的判定与性质等知识点,通过作辅助线,构造两个全等的三角形是解题关键.14、1.【分析】根据等边三角形的性质得出∠ACB=60°,然后根据等腰三角形的性质以及三角形外角的性质即可求得∠E.【题目详解】解:∵△ABC是等边三角形,∴∠ACB=60°,∵CE=CD,∴∠E=∠CDE,∵∠ACB=∠E+∠CDE,∴∠E==1°,故答案为1.【题目点拨】本题考查等边三角形的性质,关键在于牢记基础知识,通过题目找到关键性质.15、十【分析】根据正多边形的每个内角相等,可得正多边形的内角和,再根据多边形的内角和公式,可得答案.【题目详解】解:设正多边形是n边形,由题意得(n−2)×180°=144°×n.解得n=10,故答案为十.【题目点拨】本题考查了多边形的内角,利用了正多边形的内角相等,多边形的内角和公式.16、如果两个三角形的面积相等,那么是全等三角形【分析】首先分清题设是:两个三角形全等,结论是:面积相等,把题设与结论互换即可得到逆命题.【题目详解】命题“全等三角形的面积相等”的逆命题是:如果两个三角形的面积相等,那么是全等三角形.故答案为:如果两个三角形的面积相等,那么是全等三角形【题目点拨】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.17、1【分析】根据多边形的内角和公式即可得.【题目详解】一个多边形的内角和公式为,其中n为多边形的边数,且为正整数则解得故答案为:1.【题目点拨】本题考查了多边形的内角和公式,熟记公式是解题关键.18、x≠-1【分析】根据分式有意义的条件是:分母不等于0,即可求解.【题目详解】解:根据题意得:x+1≠0,
解得:x≠-1.
故答案是:x≠-1.【题目点拨】本题主要考查了分式有意义的条件,是一个基础题.三、解答题(共66分)19、28°【解题分析】根据三角形的外角和内角和性质计算即可得出答案.【题目详解】解:由图和题意可知:∠BAC=180°-∠2-∠3又∠3=∠4=∠1+∠2,∴66°=180°-∠2-(∠1+∠2)∵∠1=∠2∴66°=180°-3∠1,即∠1=38°∴∠DAC=∠BAC-∠1=66°-38°=28°【题目点拨】本题考查的是三角形,外角定理是三角形中求角度的常用定理,需要熟练掌握.20、(1)完全平方公式;平方差公式;(2);(3)【分析】(1)利用面积法解决问题即可;(2)如图2,作于点H,由题意可得出,利用面积求出的长,再利用勾股定理求解即可;(3)如图3,用4个全等的直角三角形(两直角边分别为x,y,斜边为z),拼如图正方形,当时定值,z最小时,的值最大值.易知,当小正方形的顶点是大正方形的中点时,z的值最小,此时,,据此求解即可.【题目详解】解:(1)图1中甲图大正方形的面积乙图中大正方形的面积即∴甲图要证明的数学公式是完全平方公式,乙图要证明的公式是平方差公式;故答案为:完全平方公式;平方差公式;(2)如图2,作于点H,根据题意可知,根据三角形的面积可得:解得:根据勾股定理可得:根据勾股定理可得:;(3)如图3,用4个全等的直角三角形(两直角边分别为x,y,斜边为z),拼如图正方形当时定值,z最小时,的值最大值易知,当小正方形的顶点是大正方形的中点时,z的值最小,此时,,∴的最大值为.【题目点拨】本题属于三角形综合题,考查了正方形的性质、解直角三角形、完全平方公式、平方差公式、勾股定理等知识点,解此题的关键是理解题意,会用面积法解决问题,学会数形结合的思想解决问题.21、(1);(2).【分析】(1)我们通过观察可知阴影部分面积为4ab,他是由大正方形的面积减去中间小正方形的面积得到的,从而得出等式;
(2)可利用上题得出的结论求值.【题目详解】(1)观察图形可知阴影部分的面积是边长为(a+b)的正方形面积减去边长为(a-b)的正方形面积,也是4个长是a宽是b的长方形的面积,所以.(2)根据(1)的结论可得:【题目点拨】本题是根据图形列等式,并利用等式来求值,利用等式时要弄清那个式子是等式中的a,那个式子是b.22、(1)甲仓库存放原料240吨,乙仓库存放原料210吨;(2)W=(20﹣a)m+30000;(3)①当10≤a<20时,W随m的增大而增大,②当a=20时,W随m的增大没变化;③当20≤a≤30时,W随m的增大而减小.【解题分析】(1)根据甲乙两仓库原料间的关系,可得方程组;(2)根据甲的运费与乙的运费,可得函数关系式;(3)根据一次函数的性质,要分类讨论,可得答案.【题目详解】解:(1)设甲仓库存放原料x吨,乙仓库存放原料y吨,由题意,得,解得,甲仓库存放原料240吨,乙仓库存放原料210吨;(2)由题意,从甲仓库运m吨原料到工厂,则从乙仓库云原料(300﹣m)吨到工厂,总运费W=(120﹣a)m+100(300﹣m)=(20﹣a)m+30000;(3)①当10≤a<20时,20﹣a>0,由一次函数的性质,得W随m的增大而增大,②当a=20是,20﹣a=0,W随m的增大没变化;③当20≤a≤30时,则20﹣a<0,W随m的增大而减小.【题目点拨】本题考查了二元一次方程组的应用,一次函数的应用,解(1)的关键是利用等量关系列出二元一次方程组,解(2)的关键是利用运费间的关系得出函数解析式;解(3)的关键是利用一次函数的性质,要分类讨论.23、1【分析】先根据平方根,立方根的定义列出关于a、b的二元一次方程组,再代入进行计算求出1a-5b+8的值,然后根据立方根的定义求解.【题目详解】∵2a+1的平方根是±3,3a+2b-1的立方根是-2,
∴2a+1=9,3a+2b-1=-8,
解得a=1,b=-8,
∴1a-5b+8=1×1-5×(-8)+8=61,
∴1a-5b+8的立方根是1.【题目点拨】此题考查平方根,立方根的定义,列式求出a、b的值是解题的关键.24、(1)见解析;(2).【分析】(1)根据平行线的性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 苏科版八年级物理下册《第八章力与运动》单元检测卷及答案
- 人教版七年级数学下册全册导学案
- 广东省深圳市福田区2024年中考数学三模考试试卷附答案
- 《诫子书》复习课
- 中小学机房作品管理系统的开发与应用研究
- 高一化学二第二章第二节化学能与电能练习
- 2024届安徽省巢湖市某中学高考仿真模拟化学试卷含解析
- 2024高中地理第3章地理信息技术应用第4节数字地球精练含解析湘教版必修3
- 2024高中物理第二章交变电流第六节变压器达标作业含解析粤教版选修3-2
- 2024高中语文第一单元以意逆志知人论世湘夫人训练含解析新人教版选修中国古代诗歌散文欣赏
- 洁净车间环境控制趋势分析报告1500字
- YY/T 0862-2023眼科光学眼内填充物
- 新媒体运营全套PPT完整教学课件
- 广东省高标准基本农田建设项目档案资料收集、管理
- 《侦探推理游戏精选300例》读书笔记思维导图PPT模板下载
- 2023年3高炉大修降料面停炉方案
- UG曲面造型的资料
- GB/T 35005-2018集成电路倒装焊试验方法
- GB 19641-2015食品安全国家标准食用植物油料
- GA/T 172-2005金属手铐
- 投标报价明显低于采购预算价说明函
评论
0/150
提交评论