




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省临沂兰陵县联考数学八上期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.以下列各组数为边长能构成直角三角形的是()A.6,12,13 B.3,4,7 C.8,15,16 D.5,12,132.方程组的解为,则被遮盖的两个数分别为()A.5,1 B.3,1 C.3,2 D.4,23.已知x2-2kx+64是完全平方式,则常数k的值为()A.8 B.±8 C.16 D.±164.在长为10cm,7cm,5cm,3cm的四根木条,选其中三根组成三角形,则能组成三角形的个数为()A.1 B.2 C.3 D.45.如图,为线段上一动点(不与点,重合),在同侧分别作等边和等边,与交于点,与交于点,与交于点,连接.下列五个结论:①;②;③;④DE=DP;⑤.其中正确结论的个数是()A.2个 B.3个 C.4个 D.5个6.如图,在四边形中,,,,,则四边形的面积是()A. B.C. D.7.点都在直线上,则与的大小关系是()A. B. C. D.不能比较8.已知直线y=2x与y=﹣x+b的交点(﹣1,a),则方程组的解为()A. B. C. D.9.解分式方程时,去分母变形正确的是()A. B.C. D.10.计算:的结果是()A. B.. C. D.二、填空题(每小题3分,共24分)11.已知,,是的三边,且,则的形状是__________.12.已知,则的值为_________________________.13.木工师傅做完房门后,为防止变形,会在门上钉上一条斜拉的木条,这样做的根据是______.14.某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x棵,则根据题意可列方程为__________.15.若,则的值为_____.16.计算的结果等于.17.阅读下面材料:小明想探究函数的性质,他借助计算器求出了y与x的几组对应值,并在平面直角坐标系中画出了函数图象:小聪看了一眼就说:“你画的图象肯定是错误的.”请回答:小聪判断的理由是__________________________________.请写出函数的一条性质:______________________________________.18.一个样本的40个数据分别落在4个组内,第1、2、3组数据的个数分别是7、8、15,则第4组数据的频率分别为_______.三、解答题(共66分)19.(10分)如图,已知△ABC中,∠C=90°,∠B=15°,AC=2cm,分别以A、B两点为圆心,大于AB的长为半径画弧,两弧分别相交于E、F两点,直线EF交BC于点D,求BD的长.20.(6分)在复习课上,老师布置了一道思考题:如图所示,点,分别在等边的,边上,且,,交于点.求证:.
同学们利用有关知识完成了解答后,老师又提出了下列问题,请你给出答案并说明理由.(1)若将题中“”与“”的位置交换,得到的是否仍是真命题?(2)若将题中的点,分别移动到,的延长线上,是否仍能得到?21.(6分)在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合),以AD为直角边在AD右侧作等腰直角三角形ADE,且∠DAE=90°,连接CE.(1)如图①,当点D在线段BC上时:①BC与CE的位置关系为;②BC、CD、CE之间的数量关系为.(2)如图②,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若不成立,请你写出正确结论,并给予证明.(3)如图③,当点D在线段BC的延长线上时,BC、CD、CE之间的数量关系为.22.(8分)如图,在△ABC中,∠B=60°,D、E分别为AB、BC上的点,且AE、CD相交于点F.若AE、CD分别为△ABC的角平分线.(1)求∠AFC的度数;(2)若AD=3,CE=2,求AC的长.23.(8分)中国海军亚丁湾护航十年,中国海军被亚丁湾上来往的各国商船誉为“值得信赖的保护伞”.如图,在一次护航行动中,我国海军监测到一批可疑快艇正快速向护航的船队靠近,为保证船队安全,我国海军迅速派出甲、乙两架直升机分别从相距40海里的船队首(点)尾(点)前去拦截,8分钟后同时到达点将可疑快艇驱离.己知甲直升机每小时飞行180海里,航向为北偏东,乙直升机的航向为北偏西,求乙直升机的飞行速度(单位:海里/小时).24.(8分)如图,在△ABC中,AB=AC,D为BC的中点,E,F两点分别在AB,AC边上且BE=CF.求证:DE=DF.25.(10分)(1)如图①,在△ABC中,∠C=90°,请用尺规作图作一条直线,把△ABC分割成两个等腰三角形,并说明理由(保留作图痕迹,不写作法);(2)已知内角度数的两个三角形如图②、图③所示,能否分别画一条直线把他们分割成两个等腰三角形?若能,请写出分割成的两个等腰三角形顶角的度数.26.(10分)如图,工厂和工厂,位于两条公路之间的地带,现要建一座货物中转站,若要求中转站到两条公路的距离相等,且到工厂和工厂的距离也相等,请用尺规作出点的位置.(不要求写做法,只保留作图痕迹)
参考答案一、选择题(每小题3分,共30分)1、D【解题分析】解:A.62+122≠132,不能构成直角三角形.故选项错误;B.32+42≠72,不能构成直角三角形.故选项错误;C.82+152≠162,不能构成直角三角形.故选项错误;D.52+122=132,能构成直角三角形.故选项正确.故选D.2、A【分析】把x=2代入x+y=3中求出y的值,确定出2x+y的值即可.【题目详解】解:把x=2代入x+y=3中,得:y=1,把x=2,y=1代入得:2x+y=4+1=5,故选:A.【题目点拨】此题考查了二元一次方程组的解,熟练掌握运算法则是解本题的关键.3、B【解题分析】∵x2-2kx+64是一个完全平方式,∴x2-2kx+64=(x+8)2或x2-2kx+64=(k−8)2∴k=±8.故选B.4、B【分析】根据任意两边之和大于第三边判断能否构成三角形.【题目详解】依题意,有以下四种可能:(1)选其中10cm,7cm,5cm三条线段符合三角形的成形条件,能组成三角形(2)选其中10cm,7cm,3cm三条线段不符合三角形的成形条件,不能组成三角形(3)选其中10cm,5cm,3cm三条线段不符合三角形的成形条件,不能组成三角形(4)选其中7cm,5cm,3cm三条线段符合三角形的成形条件,能组成三角形综上,能组成三角形的个数为2个故选:B.【题目点拨】本题考查了三角形的三边关系定理,熟记三边关系定理是解题关键.5、C【分析】①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE;
②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知②正确;
③根据②△CQB≌△CPA(ASA),可知③正确;
④根据∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④错误;
⑤由BC∥DE,得到∠CBE=∠BED,由∠CBE=∠DAE,得到∠AOB=∠OAE+∠AEO=60°.【题目详解】解:∵等边△ABC和等边△CDE,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,
在△ACD与△BCE中,,∴△ACD≌△BCE(SAS),
∴AD=BE,故①正确,
∵△ACD≌△BCE,
∴∠CBE=∠DAC,
又∵∠ACB=∠DCE=60°,
∴∠BCD=60°,即∠ACP=∠BCQ,
又∵AC=BC,
∴△CQB≌△CPA(ASA),
∴CP=CQ,
又∵∠PCQ=60°可知△PCQ为等边三角形,
∴∠PQC=∠DCE=60°,
∴PQ∥AE,故②正确,
∵△CQB≌△CPA,
∴AP=BQ,故③正确,
∵AD=BE,AP=BQ,
∴AD-AP=BE-BQ,
即DP=QE,
∵∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,
∴∠DQE≠∠CDE,故④错误;
∵BC∥DE,
∴∠CBE=∠BED,
∵∠CBE=∠DAE,
∴∠AOB=∠OAE+∠AEO=60°,故⑤正确;综上所述,正确的有4个,故选C.【题目点拨】本题考查了等边三角形的性质、全等三角形的判定与性质,利用旋转不变性,找到不变量,是解题的关键.6、A【分析】如下图,连接AC,在Rt△ABC中先求得AC的长,从而可判断△ACD是直角三角形,从而求得△ABC和△ACD的面积,进而得出四边形的面积.【题目详解】如下图,连接AC∵AB=BC=1,AB⊥BC∴在Rt△ABC中,AC=,∵AD=,DC=2又∵∴三角形ADC是直角三角形∴∴四边形ABCD的面积=+2=故选:A.【题目点拨】本题考查勾股定理的逆定理,遇到此类题型我们需要敏感一些,首先就猜测△ADC是直角三角形,然后用勾股定理逆定理验证即可.7、A【分析】先根据直线的解析式判断出函数的增减性,再根据两点横坐标的大小即可得出结论.【题目详解】解:∵直线中,-1<0,∴y随x的增大而减小.∵-4<1,
∴y1>y1.
故选:A.【题目点拨】本题考查的是一次函数的性质.解答此题要熟知一次函数y=kx+b:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.8、D【分析】根据一次函数图象上点的坐标特征确定两直线的交点坐标,然后根据函数图象交点坐标为两函数解析式组成的方程组的解选择答案.【题目详解】解:把(﹣1,a)代入y=2x得a=﹣2,则直线y=2x与y=﹣x+b的交点为(﹣1,﹣2),则方程组的解为.故选D.【题目点拨】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.9、C【分析】分式方程去分母转化为整式方程,即可得到结果.【题目详解】解:去分母得:1-x=-1-3(x-2),
故选:C.【题目点拨】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.10、B【解题分析】根据分式的运算法则即可求出答案.【题目详解】解:原式===故选;B【题目点拨】本题考查分式的运算法则,解题关键是熟练运用分式的运算法则,本题属于基础题型.二、填空题(每小题3分,共24分)11、等腰三角形【分析】将等式两边同时加上得,然后将等式两边因式分解进一步分析即可.【题目详解】∵,∴,即:,∵,,是的三边,∴,,都是正数,∴与都为正数,∵,∴,∴,∴△ABC为等腰三角形,故答案为:等腰三角形.【题目点拨】本题主要考查了因式分解的应用,熟练掌握相关方法是解题关键.12、-1【分析】根据多项式乘多项式法则将等式左侧展开,然后利用对应系数法即可求出m+n和mn,然后将所求多项式因式分解,最后用整体代入法求值即可.【题目详解】解:∵∴∴m+n=2,mn=-6===-1故答案为:-1.【题目点拨】此题考查的是多项式乘多项式和因式分解,掌握多项式乘多项式法则和用提公因式法因式分解是解决此题的关键.13、三角形具有稳定性【分析】三角形具有稳定性,其它多边形具有不稳定性,故需在门上钉上一条斜拉的木条.【题目详解】解:为防止变形,会在门上钉上一条斜拉的木条,这样做的根据是:三角形具有稳定性故答案为:三角形具有稳定性.【题目点拨】此题考查的是三角形具有稳定性的应用,掌握三角形具有稳定性,其它多边形具有不稳定性是解决此题的关键.14、【分析】设原计划每天植树x棵,则实际每天植树(1+20%)x=1.2x,根据“原计划所用时间﹣实际所用时间=8”列方程即可.【题目详解】解:设原计划每天植树x棵,则实际每天植树(1+20%)x=1.2x棵,根据题意可得:,故答案为.15、1【分析】把所求多项式进行变形,代入已知条件,即可得出答案.【题目详解】∵,∴;故答案为1.【题目点拨】本题考查了因式分解的应用;把所求多项式进行灵活变形是解题的关键.16、【分析】根据立方根的定义求解可得.【题目详解】解:=.故答案为.【题目点拨】本题主要考查立方根,掌握立方根的定义是解题的关键.17、答案不唯一,“因为函数值不可能为负,所以在x轴下方不会有图像”;当x-1时,y随x的增大而减小;当x≧1时,y随x的增大而增大【分析】根据表格函数值没有负数解答,根据表格的x与y的值得到增减性.【题目详解】由表格可知:因为函数值不可能为负,所以在x轴下方不会有图象,当x-1时,y随x的增大而减小;当x≧1时,y随x的增大而增大,故答案为:因为函数值不可能为负,所以在x轴下方不会有图象;当x-1时,y随x的增大而减小;当x≧1时,y随x的增大而增大.【题目点拨】此题考查函数的表示方法:表格法和图象法,还考查了函数的性质:利用表格中x与y的对应值确定函数图象的位置及函数的性质,正确理解表格中自变量与函数值的对应关系,分析其变化规律是解题的关键.18、0.1【分析】求出第4组数据的频数,即可确定出其频率.【题目详解】根据题意得:40﹣(7+8+15)=10,则第4组数据的频率为10÷40=0.1.故答案为0.1.【题目点拨】本题考查了频率与频数,弄清频率与频数之间的关系是解答本题的关键.三、解答题(共66分)19、4cm【分析】根据EF为线段AB的垂直平分线得出AD=BD,求出∠ADC=30°,根据含30度角的直角三角形性质求出AD即可.【题目详解】由图可知,EF为线段AB的垂直平分线,∴AD=BD,∴∠DAB=∠B=15°,∴∠ADC=∠DAB+∠B=30°,在Rt△ACD中,AC=2cm,∴BD=AD=2AC=4cm.【题目点拨】本题主要考查了直角三角形和线段的垂直平分线性质的应用,学会运用性质,是解答此题的关键.20、(1)真命题;(2)能,见解析【分析】(1)因为∠BQM=60°,所以∠QBA+∠BAM=60°,又因为∠QBA+∠CBN=60°,所以∠BAM=∠CBN,已知∠B=∠C,AB=AC,则ASA可判定△ABM≌△BCN,即BM=CN;(2)画出图形,易证CM=AN,和∠BAN=∠ACM=120°,即可证明△BAN≌△ACM,可得∠CAM=∠ABN,即可解题..【题目详解】解:(1)是真命题.证明:∵∠BQM=∠ABM=60°,∠BAM+∠ABM+∠AMB=180°,∠CBN+∠AMB+∠BQM=180°,
∴∠CBN=∠BAM,
∵在△ABM和△BCN中,,
∴△ABM≌△BCN,(ASA)
∴BM=CN;(2)能得到,理由如下∵∠BQM=60°,∴∠QBA+∠BAM=60°.∵∠QBA+∠CBN=60°,∴∠BAM=∠CBN.在△ABM和△BCN中,,∴△ABM≌△BCN(ASA).∴BM=CN.∵AB=AC,∴∠ACM=∠BAN=180°60°=120°,在△BAN和△ACM中,,∴△BAN≌△ACM(SAS).∴∠NBA=∠MAC,∴∠BQM=∠BNA+∠NAQ=180°∠NCB(∠CBN∠NAQ)=180°60°60°=60°.
【题目点拨】本题考查了全等三角形的判定,考查了全等三角形对应角、对应边相等的性质,本题中求证△BAN≌△ACM是解题的关键.21、(1)①BC⊥CE;②BC=CD+CE;(2)结论①成立,②不成立,结论:CD=BC+CE;(3)CE=BC+CD.【解题分析】(1)①利用条件求出△ABD≌△ACE,随之即可得出位置关系.②根据BD=CE,可得BC=BD+CD=CE+CD.(2)根据第二问的条件得出△ABD≌△ACE,随之即可证明结论是否成立.(3)分析新的位置关系得出△ABD≌△ACE,即可得出CE=BC+CD.【题目详解】(1)如图1.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∠B=∠ACE=45°,①∵∠ACE=45°=∠ACB,∴∠BCE=45°+45°=90°,即BD⊥CE;②∵BD=CE,∴BC=BD+CD=CE+CD.故答案为:BC⊥CE,BC=CD+CE;(2)结论①成立,②不成立,结论:CD=BC+CE理由:如图2中,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,即∠BAD=∠EAC.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∠ACE=∠ABD=135°,∴CD=BC+BD=BC+CE∵∠ACB=45°∴∠DCE=90°,∴CE⊥BC;(3)如图3中,∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD即∠BAD=∠CAE,∴在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∠ACE=∠ABC.∵AB=AC,∴∠ABC=∠ACB=45°,∴BD=BC+CD,即CE=BC+CD.故答案为:CE=BC+CD.【题目点拨】本题考查了复杂图形中证明三角形全等的条件,掌握证明条件是解题关键.22、(1)120°;(2)1【分析】(1)根据角平分线的定义、三角形内角和定理求解;(2)在AC上截取AG=AD=3,连接FG,证明△ADF≌△AGF,△CGF≌△CEF,根据全等三角形性质解答.【题目详解】解:(1)∵AE、CD分别为△ABC的角平分线,∴∠FAC=∠BAC,∠FCA=∠BCA.∵∠B=60°,∴∠BAC+∠BCA=120°.∴∠AFC=180﹣∠FAC﹣∠FCA=180﹣(∠BAC+∠BCA)=120°(2)如图,在AC上截取AG=AD=3,连接FG,∵AE、CD分别为△ABC的角平分线,∴∠FAG=∠FAD,∠FCG=∠FCE,∵∠AFC=120°,∴∠AFD=∠CFE=60°.在△ADF和△AGF中,,∴△ADF≌△AGF(SAS).∴∠AFD=∠AFG=60°,∠GFC=∠CFE=60°.在△CGF和△CEF中,,∴△CGF≌△CEF(ASA).∴CG=CE=2,∴AC=AG+CG=1.【题目点拨】本题主要考查全等三角形的判定方法(“SAS”、“ASA”)和全等三角形的性质、角平分线的性质及三角形内角和定理,熟练掌握这些知识点是解题的关键.23、乙直升机的飞行速度为每小时飞行240海里.【分析】根据已知条件得到∠ABO=25°+65°=90°,根据勾股定理即可得到结论.【题目详解】∵甲直升机航向为北偏东25°,乙直升机的航向为北偏西65°,∴∠ABO=25°+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 儿科副高面试题及答案
- 学前数学教师工作总结
- 2025年 黄石市劳动就业管理局政府雇员招聘考试笔试试卷附答案
- 吧台酒水培训
- 2025年中国攀爬安全带行业市场全景分析及前景机遇研判报告
- 2025年中国尿失禁内裤行业市场全景分析及前景机遇研判报告
- 员工感恩心态培训
- 入院护理要点与入院宣教
- 品质方面培训
- 下肢静脉血栓内科诊疗规范
- 井下探放水技术专题培训
- 3地质勘查项目预算标准
- 胆汁与胆汁酸的代谢培训课件
- 高等数学期末复习题
- 新概念二英文课文字帖衡水体4Blesson2548
- 蜡笔小新优质获奖课件
- 油罐车驾驶员日常考核细则
- 各级医疗机构医院分级诊疗18个常见病分级诊疗流程(2023年版)
- 测控电路复习题及答案
- BEC商务英语中级考试阅读真题
- 单元体吊装方案优质资料
评论
0/150
提交评论