2024届陕西省咸阳市秦都区八年级数学第一学期期末学业质量监测模拟试题含解析_第1页
2024届陕西省咸阳市秦都区八年级数学第一学期期末学业质量监测模拟试题含解析_第2页
2024届陕西省咸阳市秦都区八年级数学第一学期期末学业质量监测模拟试题含解析_第3页
2024届陕西省咸阳市秦都区八年级数学第一学期期末学业质量监测模拟试题含解析_第4页
2024届陕西省咸阳市秦都区八年级数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届陕西省咸阳市秦都区八年级数学第一学期期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.将进行因式分解,正确的是()A. B.C. D.2.下列因式分解正确的是()A.x2+xy+x=x(x+y) B.x2﹣4x+4=(x+2)(x﹣2)C.a2﹣2a+2=(a﹣1)2+1 D.x2﹣6x+5=(x﹣5)(x﹣1)3.已知关于x的不等式2x-m>-3的解集如图所示,则m的取值为()A.2 B.1 C.0 D.-14.若代数式有意义,则实数的取值范围是()A. B. C. D.5.下列运算正确的是()A.a3+a3=a3 B.a•a3=a3 C.(a3)2=a6 D.(ab)3=ab36.已知数据,,的平均数为,数据,,的平均数为,则数据,,的平均数为().A. B. C. D.7.如图,已知线段米.于点,米,射线于,点从点向运动,每秒走米.点从点向运动,每秒走米.、同时从出发,则出发秒后,在线段上有一点,使与全等,则的值为()A. B.或 C. D.或8.甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作天完成总量的三分之一,这时增加了乙队,两队又共同工作了天,总量全部完成.那么乙队单独完成总量需要()A.天 B.天 C.天 D.天9.以下列各组数为边长能构成直角三角形的是()A.6,12,13 B.3,4,7 C.8,15,16 D.5,12,1310.2-3的倒数是()A.8 B.-8 C. D.-二、填空题(每小题3分,共24分)11.如图,在中,,平分交BC于点,于点.若,则_______________.12.如图,将等腰绕底角顶点A逆时针旋转15°后得到,如果,那么两个三角形的重叠部分面积为____.13.若m>n,则m-n_____0.(填“>”“<”“=”)14.如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形B、C、D的面积依次为4、3、9,则正方形A的面积为_______.15.64的立方根是_______.16.若a﹣b=1,ab=2,那么a+b的值为_____.17.如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′在直线y=x上,则点B与其对应点B′间的距离为_____.18.如图,在,,点是上一点,、分别是线段、的垂直平分线,则________.三、解答题(共66分)19.(10分)从地到地全程千米,前一路段为国道,其余路段为高速公路.已知汽车在国道上行驶的速度为,在高速公路上行驶的速度为,一辆客车从地开往地一共行驶了.求、两地间国道和高速公路各多少千米.(列方程组,解应用题)20.(6分)今年清明节前后某茶叶销售商在青山茶厂先后购进两批茶叶.第一批茶叶进货用了5.4万元,进货单价为a元/千克.购回后该销售商将茶叶分类包装出售,把其中300千克精装品以进货单件的两倍出售;余下的简装品以150元/千克的价格出售,全部卖出.第二批进货用了5万元,这一次的进货单价每千克比第一批少了20元.购回分类包装后精装品占总质量的一半,以200元/千克的单价出售;余下的简装品在这批进货单价的基础上每千克加价40元后全部卖出.若其它成本不计,第二批茶叶获得的毛利润是3.5万元.(1)用含a的代数式表示第一批茶叶的毛利润;(2)求第一批茶叶中精装品每千克售价.(总售价-总进价=毛利润)21.(6分)如图,在等腰△ABC中,AC=BC,D,E分别为AB,BC上一点,∠CDE=∠A.(1)如图1,若BC=BD,∠ACB=90°,则∠DEC度数为_________°;(2)如图2,若BC=BD,求证:CD=DE;(3)如图3,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE-BE的值.22.(8分)解方程:先化简后求值,其中满足23.(8分)如图,△ABC中,AB=BC,∠ABC=45°,BE⊥AC于点E,AD⊥BC于点D,BE与AD相交于F.(1)求证:BF=AC;(2)若CD=1,求AF的长.24.(8分)如图,是等边三角形,为上两点,且,延长至点,使,连接.(1)如图1,当两点重合时,求证:;(2)延长与交于点.①如图2,求证:;②如图3,连接,若,则的面积为______________.25.(10分)为响应低碳号召,张老师上班的交通工具由自驾车改为骑自行车,张老师家距学校15千米,因为自驾车的速度是自行车速度的3倍,所以张老师每天比原来早出发小时,才能按原来时间到校,张老师骑自行车每小时走多少千米?26.(10分)为了解某校八年级暑期参加义工活动的时间,某研究小组随机采访了该校八年级的20位同学,得到这20位同学暑假参加义工活动的天数的统计如下:天数(天)02356810人数1248221(1)这20位同学暑期参加义工活动的天数的中位数是______天,众数是_______天,极差是_______天;(2)若小明同学把天数中的数据“8”看成了“7”,那么中位数、众数、方差,极差四个指标中受影响的是___;(3)若该校有500名八年级学生,试用这20个同学的样本数据去估计该校八年级学生暑期参加义工活动的总天数.

参考答案一、选择题(每小题3分,共30分)1、C【分析】多项式有公因式,首先用提公因式法提公因式,提公因式后,得到多项式,再利用平方差公式进行分解.【题目详解】,故选C.【题目点拨】此题主要考查了了提公因式法和平方差公式综合应用,解题关键在于因式分解时通常先提公因式,再利用公式,最后再尝试分组分解;2、D【分析】各项分解得到结果,即可作出判断.【题目详解】A、原式=x(x+y+1),不符合题意;B、原式=(x﹣2)2,不符合题意;C、原式不能分解,不符合题意;D、原式=(x﹣5)(x﹣1),符合题意,故选:D.【题目点拨】本题考查了因式分解的应用,掌握因式分解的概念以及应用是解题的关键.3、D【分析】本题是关于x的不等式,应先只把x看成未知数,求得x的解集,再根据数轴上的解集,来求得a的值.【题目详解】2x>m−3,解得x>,∵在数轴上的不等式的解集为:x>−2,∴=−2,解得m=−1;故选:D.【题目点拨】当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据数轴上的解集进行判断,求得另一个字母的值.4、D【分析】分式有意义的条件是分母不为.【题目详解】代数式有意义,,故选D.【题目点拨】本题运用了分式有意义的条件知识点,关键要知道分母不为是分式有意义的条件.5、C【解题分析】根据幂的乘方和积的乘方,合并同类项,以及同底数幂的乘法的运算法则,逐项判断即可.【题目详解】解:A、∵a3+a3=2a3,∴选项A不符合题意;B、∵a•a3=a4,∴选项B不符合题意;C、∵(a3)2=a6,∴选项C符合题意;D、∵(ab)3=a3b3,∴选项D不符合题意.故选:C.【题目点拨】本题考查幂的乘方和积的乘方,合并同类项,以及同底数幂的乘法,正确掌握相关运算法则是解题关键.6、A【分析】通过条件列出计算平均数的式子,然后将式子进行变形代入即可.【题目详解】解:由题意可知,,∴,故选:A.【题目点拨】本题考查了平均数的计算,熟练掌握平均数的计算方法并将式子进行正确的变形是解题的关键.7、C【分析】分两种情况考虑:当△APC≌△BQP时与当△APC≌△BPQ时,根据全等三角形的性质即可确定出时间.【题目详解】当△APC≌△BQP时,AP=BQ,即20-x=3x,解得:x=5;当△APC≌△BPQ时,AP=BP=AB=10米,此时所用时间x为10秒,AC=BQ=30米,不合题意,舍去;综上,出发5秒后,在线段MA上有一点C,使△CAP与△PBQ全等.故选:C.【题目点拨】此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.8、D【分析】根据题意得出本题的等量关系为工作时间=工作总量÷工作效率,设未知数,列方程求解即可.【题目详解】解:设乙队单独完成总量需要x天,则解得x=1.经检验x=1是分式方程的解,故选:D.【题目点拨】本题考查分式方程的实际应用,列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据,找到关键描述语,找到等量关系是解决问题的关键.9、D【解题分析】解:A.62+122≠132,不能构成直角三角形.故选项错误;B.32+42≠72,不能构成直角三角形.故选项错误;C.82+152≠162,不能构成直角三角形.故选项错误;D.52+122=132,能构成直角三角形.故选项正确.故选D.10、A【分析】利用负整数指数幂法则,以及倒数的定义判断即可.【题目详解】2-3==,则2-3的倒数是8,故选:A.【题目点拨】本题考查了负整数指数幂,以及倒数,熟练掌握运算法则是解本题的关键.二、填空题(每小题3分,共24分)11、56°【分析】根据三角形内角和定理证明∠DBE=∠DAC,再根据角平分线的定义即可解决问题.【题目详解】∵∠C=∠E=90°,∠ADC=∠BDE,∴∠DBE=∠DAC=28°.∵AD平分∠CAB,∴∠CAB=2∠CAD=2×28°=56°.故答案为:56°.【题目点拨】本题考查了三角形内角和定理,角平分线的定义等知识,解答本题的关键是熟练掌握基本知识,属于中考常考题型.12、【分析】设B′C′与AB相交于点D,根据等腰直角三角形的性质可得∠BAC=45°,根据旋转角可得∠CAC′=15°,然后求出∠C′AD=30°,根据30°角所对的直角边等于斜边的一半可得AD=2C′D,然后利用勾股定理列式求出C′D的长度,再根据三角形的面积公式列式进行计算即可得解.【题目详解】设B′C′与AB相交于点D,如图,在等腰直角△ABC中,∠BAC=45°,∵旋转角为15°,∴∠CAC′=15°,∴∠C′AD=∠BAC-∠CAC′=45°-15°=30°,∴AD=2C′D,在Rt△AC′D中,根据勾股定理,AC′2+C′D2=AD2,即12+C′D2=4C′D2,解得C′D=,∴重叠部分的面积=.故答案为:.【题目点拨】本题考查了旋转的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理的应用,熟练掌握旋转的性质是解题的关键.13、【分析】根据不等式的性质即可得.【题目详解】两边同减去n得,,即故答案为:.【题目点拨】本题考查了不等式的性质:两边同减去一个数,不改变不等号的方向,熟记性质是解题关键.14、1【解题分析】根据勾股定理的几何意义:得到S正方形A+S正方形B=S正方形E,S正方形D﹣S正方形C=S正方形E,求解即可.【题目详解】由题意:S正方形A+S正方形B=S正方形E,S正方形D﹣S正方形C=S正方形E,∴S正方形A+S正方形B=S正方形D﹣S正方形C.∵正方形B,C,D的面积依次为4,3,9,∴S正方形A+4=9﹣3,∴S正方形A=1.故答案为1.【题目点拨】本题考查了勾股定理,要熟悉勾股定理的几何意义,知道直角三角形两直角边的平方和等于斜边的平方.15、4.【分析】根据立方根的定义即可求解.【题目详解】∵43=64,∴64的立方根是4故答案为4【题目点拨】此题主要考查立方根的定义,解题的关键是熟知立方根的定义.16、±1.【分析】把a-b=1两边平方,利用完全平方公式化简,整理求出a2+b2的值,原式平方后利用完全平方公式化简,开方即可求出值.【题目详解】把a﹣b=1,两边平方得:(a﹣b)2=a2+b2﹣2ab=1,把ab=2代入得:a2+b2=5,∴(a+b)2=a2+b2+2ab=9,则a+b=±1,故答案为:±1【题目点拨】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.17、1.【题目详解】解:如图,连接AA′、BB′.∵点A的坐标为(0,2),△OAB沿x轴向右平移后得到△O′A′B′,∴点A′的纵坐标是2.又∵点A的对应点在直线y=x上一点,∴2=x,解得x=1,∴点A′的坐标是(1,2),∴AA′=1,∴根据平移的性质知BB′=AA′=1.故答案为1.【题目点拨】本题考查了一次函数图象上点的坐标特征、坐标与图形变化﹣平移.根据平移的性质得到BB′=AA′是解题的关键.18、【分析】根据、分别是线段、的垂直平分线,得到BE=DE,DF=CF,由等腰三角形的性质得到∠EDB=∠B,∠FDC=∠C,根据三角形的内角和得到∠B+∠C=180−∠A,根据平角的定义即可得到结论.【题目详解】∵、分别是线段、的垂直平分线,∴BE=DE,DF=CF,∴∠EDB=∠B,∠FDC=∠C,∵,∴∠EDB+∠FDC=180−,∴∠B+∠C=100,∴∠A=180-100=80,故答案为:80.【题目点拨】本题考查了线段的垂直平分线的性质,等腰三角形的性质,三角形的内角和,熟练掌握线段的垂直平分线的性质是解题的关键.三、解答题(共66分)19、、两地国道为90千米,高速公路为200千米.【分析】首先设A、B两地间国道和高速公路分别是x、y千米,根据题意可得等量关系:国道路程+高速路程=290,在国道上行驶的时间+在高速公路上行驶的时间=1.5,根据等量关系列出方程组,再解即可.【题目详解】解:设、两地国道为千米,高速公路为千米.则方程组为:,解得:,答:A、B两地间国道和高速公路分别是90、200千米.【题目点拨】此题考查了二元一次方程组的应用,关键是设出未知数,表示出每段行驶所花费的时间,得出方程组,难度一般.20、(1)600a+-99000;(2)240元【分析】(1)用总销售额减去成本即可求出毛利润;(2)因为第一批进货单价为元/千克,则第二批的进货单价为()元/千克,根据第二批茶叶获得的毛利润是35000元,列方程求解.【题目详解】(1)由题意得,第一批茶叶的毛利润为:300×2a+150×(-300)-54000=600a+99000;(2)设第一批进货单价为a元/千克,由题意得,××200+××(20+40)50000=35000,解得:120,经检验:120是原分式方程的解,且符合题意.则售价为:.答:第一批茶叶中精装品每千克售价为240元.【题目点拨】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.21、(1)67.5;(1)证明见解析;(3)DE-BE=1.【分析】(1)先根据等腰三角形的性质,得出∠A=∠B=45°=∠CDE,再根据BC=BD,可得出∠BDC的度数,然后可得出∠BDE的度数,最后根据三角形外角的性质可得出∠DEC的度数;(1)先根据条件得出∠ACD=∠BDE,BD=AC,再根据ASA判定△ADC≌△BED,即可得到CD=DE;

(3)先根据条件得出∠DCB=∠CDE,进而得到CE=DE,再在DE上取点F,使得FD=BE,进而判定△CDF≌△DBE(SAS),得出CF=DE=CE,再根据CH⊥EF,运用三线合一即可得到FH=HE,最后得出CE-BE=DE-DF=EF=1HE,即可得出结论.【题目详解】(1)解:∵AC=BC,∠ACB=90°,∴∠A=∠B=45°=∠CDE,又BC=BD,∴∠BDC=∠BCD=(180°-∠B)=67.5°,∴∠BDE=∠BDC-∠CDE=67.5°-45°=11.5°,∴∠DEC=∠B+∠BDE=67.5°;故答案为:67.5;(1)证明:∵AC=BC,∠CDE=∠A,

∴∠A=∠B=∠CDE,

∵∠CDB=∠A+∠ACD=∠CDE+∠BDE,

∴∠ACD=∠BDE,

又∵BC=BD,

∴BD=AC,

在△ADC和△BED中,,∴△ADC≌△BED(ASA),

∴CD=DE;(3)解:∵CD=BD,

∴∠B=∠DCB,

由(1)知:∠CDE=∠B,

∴∠DCB=∠CDE,

∴CE=DE,

如图,在DE上取点F,使得FD=BE,

在△CDF和△DBE中,,∴△CDF≌△DBE(SAS),

∴CF=DE=CE,

又∵CH⊥EF,

∴FH=HE,∴DE-BE=DE-DF=EF=1HE=1.【题目点拨】本题主要考查了全等三角形的判定与性质,以及等腰三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形以及等腰三角形.22、(1)无解;(1),-1【分析】(1)根据解分式方程的步骤计算即可;(1)先根据分式的混合运算顺序和运算法则化简原式,再整体代入计算可得.【题目详解】(1)两边都乘以(x+1)(x﹣1),得:x(x+1)﹣(x+1)(x﹣1)=8,解得:x=1,当x=1时,(x+1)(x﹣1)=0,∴x=1是增根,∴原分式方程无解;(1)原式••(a+1)(a﹣1)=(a﹣1)(a+1)=a1﹣a﹣1.当a1﹣a=0时,原式=﹣1.【题目点拨】本题考查了分式的化简求值,解答本题的关键是掌握分式的混合运算顺序和运算法则及解分式方程的步骤.23、(1)详见解析;(2).【分析】(1)根据题意易得AD=BD,∠BFD=∠ACD,进而得到△BDF≌△ACD,问题得证;(2)连接CF,由(1)易得DF=DC,然后利用垂直平分线的性质定理可求解.【题目详解】解:(1)AD⊥BD,∠BAD=45°,∴AD=BD,∵∠BFD=∠AFE,∠AFE+∠CAD=90°,∠CAD+∠ACD=90°,∴∠BFD=∠ACD,在△BDF和△ACD中,,∴△BDF≌△ACD(AAS),∴BF=AC;(2)连接CF,∵△BDF≌△ADC,∴DF=DC,∴△DFC是等腰直角三角形∵CD=1,∴CF=∵AB=BC,BE⊥AC,∴AE=EC,BE是AC的垂直平分线.∴AF=CF,∴AF=.【题目点拨】本题主要考查全等三角形的性质与判定、等腰直角三角形及线段的垂直平分线的性质定理,关键是根据题意得到三角形全等,然后得到线段的等量关系.24、(1)见解析;(1)①见解析;②1.【分析】(1)当D、E两点重合时,则AD=CD,然后由等边三角形的性质可得∠CBD的度数,根据等腰三角形的性质和三角形的外角性质可得∠F的度数,于是可得∠CBD与∠F的关系,进而可得结论;(1)①过点E作EH∥BC交AB于点H,连接BE,如图4,则易得△AHE是等边三角形,根据等边三角形的性质和已知条件可得EH=CF,∠BHE=∠ECF=110°,BH=EC,于是可根据SAS证明△BHE≌△ECF,可得∠EBH=∠FEC,易证△BAE≌△BCD,可得∠ABE=∠CBD,从而有∠FEC=∠CBD,然后根据三角形的内角和定理可得∠BGE=∠BCD,进而可得结论;②易得∠BEG=90°,于是可知△BEF是等腰直角三角形,由30°角的直角三角形的性质和等腰直角三角形的性质易求得BE和BF的长,过点E作EM⊥BF于点F,过点C作CN⊥EF于点N,如图5,则△BEM、△EMF和△CFN都是等腰直角三角形,然后利用等腰直角三角形的性质和30°角的直角三角形的性质可依次求出BM、MC、CF、FN、CN、GN的长,进而可得△GCN也是等腰直角三角形,于是有∠BCG=90°,故所求的△BCG的面积=,而BC和CG可得,问题即得解决.【题目详解】解:(1)∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,当D、E两点重合时,则AD=CD,∴,∵,∴∠F=∠CDF,∵∠F+∠CDF=∠ACB=60°,∴∠F=30°,∴∠CBD=∠F,∴;(1)①∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=AC,过点E作EH∥BC交AB于点H,连接BE,如图4,则∠AHE=∠ABC=60°,∠AEH=∠ACB=60°,∴△AHE是等边三角形,∴AH=AE=HE,∴BH=EC,∵,CD=CF,∴EH=CF,又∵∠BHE=∠ECF=110°,∴△BHE≌△ECF(SAS),∴∠EBH=∠FEC,EB=EF,∵BA=BC,∠A=∠ACB=60°,AE=CD,∴△BAE≌△BCD(SAS),∴∠ABE=∠CBD,∴∠FEC=∠CBD,∵∠EDG=∠BDC,∴∠BGE=∠BCD=60°;②∵∠BGE=60°,∠EBD=30°,∴∠BEG=90°,∵EB=EF

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论