版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省宣城市第六中学2024届八年级数学第一学期期末教学质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.在平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标是()A.(-2,-3) B.(2,-3) C.(-3,2) D.(2,3)2.以下列各组线段的长为边,能组成三角形的是()A.2、4、7 B.3、5、2 C.7、7、3 D.9、5、33.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120° B.130° C.140° D.150°4.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=40°,则∠CDE的度数为()A.50° B.40° C.60° D.80°5.一组数据3、-2、0、1、4的中位数是()A.0 B.1 C.-2 D.46.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含45°角的直角三角板的斜边与纸条一边重合,含30°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.30° B.20° C.15° D.14°7.下列边长相等的正多边形能完成镶嵌的是()A.2个正八边形和1个正三角形 B.3个正方形和2个正三角形C.1个正五边形和1个正十边形 D.2个正六边形和2个正三角形8.如图,在中,AB=8,BC=6,AB、BC边上的高CE、AD交于点H,则AD与CE的比值是()A. B.C. D.9.某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是()A.1.95元 B.2.15元 C.2.25元 D.2.75元10.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和一角对应相等C.两角和其中一角的对边对应相等D.两角和它们的夹边对应相等11.如图,用,直接判定的理由是()A. B. C. D.12.若m=,则m介于哪两个整数之间()A.1<m<2 B.2<m<3 C.3<m<4 D.4<m<5二、填空题(每题4分,共24分)13.已知和都是方程的解,则_______.14.如图,把等腰直角三角板放平面直角坐标系内,已知直角顶点的坐标为,另一个顶点的坐标为,则点的坐标为_______.15.下面是一个按某种规律排列的数阵:根据数阵排列的规律,第5行从左向右第5个数为______,第n(n≥3,且n是整数)行从左向右数第5个数是______.(用含n的代数式表示).16.如图,学校大门口的电动伸缩门,其中间部分都是四边形的结构,这是应用了四边形的______.17.如图,把一张三角形纸片(△ABC)进行折叠,使点A落在BC上的点F处,折痕为DE,点D,点E分别在AB和AC上,DE∥BC,若∠B=75°,则∠BDF的度数为_____.18.如图,圆柱形容器中,高为1m,底面周长为4m,在容器内壁离容器底部0.4m处的点B处有一蚊子.此时,一只壁虎正好在容器外壁,离容器上沿0.6m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为______m(容器厚度忽略不计).三、解答题(共78分)19.(8分)已知中,.(1)如图1,在中,,连接、,若,求证:(2)如图2,在中,,连接、,若,于点,,,求的长;(3)如图3,在中,,连接,若,求的值.20.(8分)已知,.(1)若点的坐标为,请你画一个平面直角坐标系,标出点的位置;(2)求出的算术平方根.21.(8分)小强骑车从家到学校要经过一段先上坡后下坡的路,在这段路上小强骑车的距离s(千米)与骑车的时间t(分钟)之间的函数关系如图所示,请根据图中信息回答下列问题:(1)小强去学校时下坡路长千米;(2)小强下坡的速度为千米/分钟;(3)若小强回家时按原路返回,且上坡的速度不变,下坡的速度也不变,那么回家骑车走这段路的时间是分钟.22.(10分)如图,已知点和点在线段上,且,点和点在的同侧,,,和相交于点.(1)求证:;(2)当,猜想的形状,并说明理由.23.(10分)(1)解方程组(2)解不等式组24.(10分)请把下列多项式分解因式:(1)(2)25.(12分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:(1)上表中众数m的值为;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.26.若式子无意义,求代数式(y+x)(y-x)+x2的值.
参考答案一、选择题(每题4分,共48分)1、A【分析】在平面直角坐标系中,关于x轴对称的点横坐标不变,纵坐标变为相反数.【题目详解】解:点P(-2,3)关于x轴对称的点的坐标(-2,-3).故选A.2、C【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【题目详解】解:根据三角形任意两边的和大于第三边,可知
A、2+4<7,不能够组成三角形,故A错误;
B、2+3=5,不能组成三角形,故B错误;
C、7+3>7,能组成三角形,故C正确;
D、3+5<9,不能组成三角形,故D错误;
故选:C.【题目点拨】本题考查了能够组成三角形三边的条件,熟练掌握构成三角形的条件是解题的关键.3、C【解题分析】试题分析:如图,延长AC交EF于点G;∵AB∥EF,∴∠DGC=∠BAC=50°;∵CD⊥EF,∴∠CDG=90°,∴∠ACD=90°+50°=140°,故选C.考点:垂线的定义;平行线的性质;三角形的外角性质4、C【分析】根据等腰三角形的性质推出∠A=∠CDA=40°,∠B=∠DCB,∠BDE=∠BED,根据三角形的外角性质求出∠B=20°,由三角形的内角和定理求出∠BDE,根据平角的定义即可求出选项.【题目详解】∵AC=CD=BD=BE,∠A=40°,∴∠A=∠CDA=40°,∠B=∠DCB,∠BDE=∠BED,∵∠B+∠DCB=∠CDA=40°,∴∠B=20°,∵∠B+∠EDB+∠DEB=180°,∴∠BDE=∠BED=(180°﹣20°)=80°,∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣40°﹣80°=60°,故选:C.【题目点拨】此题考查等腰三角形的性质:等边对等角.5、B【分析】将这组数据从小到大重新排列后为-2、0、1、3、4;最中间的那个数1即中位数.【题目详解】解:将这组数据从小到大重新排列后为-2、0、1、3、4;最中间的那个数1即中位数.故选:B【题目点拨】本题考查中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.6、C【分析】先根据平行线的性质得出的度数,进而可得出结论.【题目详解】解:,,故选:【题目点拨】此题考查的是平行线的性质,熟知平行线的性质与三角板的特点是解答此题的关键.7、D【分析】只需要明确几个几何图形在一点进行平铺就是几个图形与这一点相邻的所有内角之和等于360°即可。【题目详解】A.2个正八边形和1个正三角形:135°+135°+60°=330°,故不符合;B.3个正方形和2个正三角形:90°+90°+90°+60°+60°=390°,故不符合;C.1个正五边形和1个正十边形:108°+144°=252°,故不符合;D.2个正六边形和2个正三角形:120°+120°+60°+60°=360°,符合;故选D.【题目点拨】本题考查多边形的内角,熟练掌握多边形的内角的度数是解题关键.8、A【分析】根据三角形的面积公式即可得.【题目详解】由题意得:解得故选:A.【题目点拨】本题考查了三角形的高,利用三角形的面积公式列出等式是解题关键.9、C【分析】根据加权平均数的定义列式计算可得.【题目详解】解:这天销售的矿泉水的平均单价是(元),故选C.【题目点拨】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.10、B【解题分析】三角形全等的判定方法有SSS、SAS、ASA、AAS、HL,B中“一角”如果不是两边夹角则不能判定全等,故选B11、A【分析】由于∠B=∠D,∠1=∠2,再加上公共边,则可根据“AAS”判断△ABC≌△ADC.【题目详解】在△ABC和△ADC中,,∴△ABC≌△ADC(AAS).故选A.【题目点拨】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.12、C【分析】由可得答案.【题目详解】解:∵,∴3<<4,∴3<m<4,故选:C.【题目点拨】本题考查无理数的估算,用先平方再比较的一般方法比较简单.二、填空题(每题4分,共24分)13、-1【分析】根据方程的解满足方程,把解代入方程,可得二元一次方程组,解方程组,可得答案.【题目详解】把、分别代入得:,解得,∴.故答案为:-1.【题目点拨】本题考查方程的解及二元一次方程组,熟练掌握解的概念及二元一次方程组解法是解题关键.14、【分析】如图:分别过B和A作y轴的垂线,垂足分别为D、E;根据余角的性质,可得∠DBC=∠ECA,然后运用AAS判定△BCD≌△CAE,可得CE=BD=6,AE=CD=OD-OC=4即可解答.【题目详解】解:分别过B和A作y轴的垂线,垂足分别为D、E∴∠BDC=∠AEC=90°∵AC=BC,∠BCA=90°,∠BCD+∠ECA=90°又∵∠CBD+∠BCD=90°∴∠CBD=∠ECA在△BCD和△CAE中∠BDC=∠AEC=90°,∠CBD=∠ECA,AC=BC∴△BCD≌△CAE(AAS)∴CE=BD=6,AE=CD=OD-OC=4∴OE=CE-0C=6-2=4∴B点坐标为(4,-4).故答案为(4,-4).【题目点拨】本题考查了全等三角形的判定与性质,根据题意构造出全等三角形是解答本题的关键.15、;.【分析】观察不难发现,每一行的数字的个数为连续的奇数,且被开方数为相应的序数,然后求解即可.【题目详解】由图可知,第5行从左向右数第5个数的被开方数为16+5=21,
所以为;
前n-1行数的个数为1+3+5+…+2n-1==(n-1)2=n2-2n+1,
∴第n(n≥3,且n是整数)行从左向右数第5个数是.
故答案为:;.【题目点拨】此题考查规律型:数字变化类,观察出每一行的数字的个数为连续的奇数,且被开方数为相应的序数是解题的关键.16、不稳定性【分析】生活中常见的伸缩门、升降机等,这是应用了四边形不稳定性进行制作的,便于伸缩.【题目详解】解:学校大门做成伸缩门,这是应用了四边形不稳定性的特性.故答案为:不稳定性.【题目点拨】本题考查了四边形的特征,学校大门做成的伸缩门,这是应用了四边形不稳定性制作的.17、30°【分析】利用平行线的性质求出∠ADE=75°,再由折叠的性质推出∠ADE=∠EDF=75°即可解决问题.【题目详解】解:∵DE∥BC,∴∠ADE=∠B=75°,又∵∠ADE=∠EDF=75°,∴∠BDF=180°﹣75°﹣75°=30°,故答案为30°.【题目点拨】本题综合考查了平行线以及折叠的性质,熟练掌握两性质定理是解答关键.18、【分析】将容器侧面展开,建立A关于EC的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【题目详解】如图,将容器侧面展开,作A关于EC的对称点A′,连接A′B交EC于F,则A′B即为最短距离.
∵高为1m,底面周长为4m,在容器内壁离容器底部0.4m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.6m与蚊子相对的点A处,
∴A′D==2(m),BD=1+0.6-0.4=1.2(m),
∴在直角△A′DB中,A′B=(m),故答案是:.【题目点拨】本题考查了平面展开-最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.三、解答题(共78分)19、(1)详见解析;(2);(3).【分析】(1)证∠EAC=∠DAB.利用SAS证△ACE≌△ABD可得;(2)连接BD,证,证△ACE≌△ABD可得,CE=BD=5,利用勾股定理求解;(3)作CE垂直于AC,且CE=AC,连接AE,则,利用勾股定理得AE,BE=,根据(1)思路得AD=BE=.【题目详解】(1)证明:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,即∠EAC=∠DAB.在△ACE与△ABD中,,∴△ACE≌△ABD(SAS),∴;(2)连接BD因为,,所以是等边三角形因为,ED=AD=AE=4因为所以同(1)可知△ACE≌△ABD(SAS),所以,CE=BD=5所以所以BE=(3)作CE垂直于AC,且CE=AC,连接AE,则所以AE=因为所以AE又因为所以所以因为所以BC=CD,因为同(1)可得△ACD≌△ECB(SAS)所以AD=BE=所以【题目点拨】考核知识点:等边三角形;勾股定理.构造全等三角形和直角三角形是关键.20、(1)P(2,2)或P(-1,2);(2)2.【分析】(1)依据平方根的定义、立方根的定义可求得m和n的值,得到点的坐标,最后画出点P的坐标;
(2)分别代入计算即可.【题目详解】(1)∴,即或,∴,∵,,
,
∴),);
所求作的P点如图所示:(2)当时,,的算术平方根是2,
当,时,,没有算术平方根.
所以3m+n的算术平方根为:2.【题目点拨】本题考查了立方根与平方根的定义、坐标的确定,此题难度不大,注意掌握方程思想的应用,不要遗漏.21、(1)2(2)0.5(3)1【分析】(1)根据题意和函数图象可以得到下坡路的长度;(2)根据函数图象中的数据可以求的小强下坡的速度;(3)根据题意可以求得小强上坡的速度,进而求得小强返回时需要的时间.【题目详解】(1)由题意和图象可得:小强去学校时下坡路为:3﹣1=2(千米).故答案为:2;(2)小强下坡的速度为:2÷(10﹣6)=0.5千米/分钟.故答案为:0.5;(3)小强上坡时的速度为:1÷6=千米/分钟,故小强回家骑车走这段路的时间是:=1(分钟).故答案为:1.【题目点拨】本题考查了函数图象,解题的关键是明确题意,找出所求问题需要的条件.22、(1)见解析;(2)是等边三角形,理由见解析【分析】(1)直接根据SAS判定定理即可证明;(2)直接根据等边三角形的判定定理即可证明.【题目详解】(1)证明:∵,∴,即,在和中,∴;(2)解:是等边三角形,理由如下:∵,∴,∵,∴,∴是等边三角形.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 某著名企业商业地产盈利模式深度解析及二三线商业
- 电机与电气控制技术 课件 项目3 变压器的应用与维护
- 《GB-T 25310-2010固定式点、凸焊机》专题研究报告
- 《GB 5959.7-2008电热装置的安全 第7部分:对具有电子枪的装置的特殊要求》专题研究报告
- 《GBT 22122-2008数字电视环绕声伴音测量方法》专题研究报告
- 《GBT 17552-2008信息技术 识别卡 金融交易卡》专题研究报告
- 道路安全培训效果评价课件
- 2026年鲁教版九年级道德与法治教育上册月考题库试题附答案
- 2026年河北廊坊市高职单招职业适应性测试试题解析及答案
- 2025-2026年西师版二年级数学上册期末考试题库(附含答案)
- 智慧校园背景下高校后勤设施设备全生命周期管理研究
- 中建三局2024年项目经理思维导图
- 小区道闸管理办法
- DB42-T 2391-2025 全域国土综合整治项目实施方案编制指南
- DB3301∕T 0419-2023 婴幼儿成长驿站管理与服务规范
- 老年医院重点专科建设方案
- 2025年江苏省苏州市初二(上)英语期末模拟卷(二)含答案
- 规培中医病例讨论流程规范
- 银行解封协议书模板
- 小学生必读书试题及答案
- 超星尔雅学习通《学术规范与学术伦理(华东师范大学)》2025章节测试附答案
评论
0/150
提交评论