版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省亳州市高炉学校2024届数学八上期末质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.已知则的值为:A.1.5 B. C. D.2.如图,已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD,连接DE,则∠BDE的度数为()A.105° B.120° C.135° D.150°3.如图,已知,欲证,还必须从下列选项中补选一个,则错误的选项是()A. B.C. D.4.将0.000075用科学记数法表示为()A.7.5×105B.7.5×10-5C.0.75×10-4D.75×10-65.下列四个图案中,是轴对称图形的是()A. B. C. D.6.下列卡通动物简笔画图案中,属于轴对称图形的是()A. B. C. D.7.如图,直线经过点,则不等式的解集为()A. B. C. D.8.已知,求作射线,使平分作法的合理顺序是()①作射线,②在和上分别截取,,使,③分别以,为圆心,大于的长为半径作弧,内,两弧交于.A.①②③ B.②①③ C.②③① D.③②①9.下列图形①线段、②角、③等腰三角形、④直角三角形,是轴对称图形的是()A.①② B.③④ C.①②③ D.②③④10.如图,在中,cm,cm,点D、E分别在AC、BC上,现将沿DE翻折,使点C落在点处,连接,则长度的最小值()A.不存在 B.等于1cmC.等于2cm D.等于2.5cm11.如图,在四边形中,是边的中点,连接并延长,交的延长线于点,.添加一个条件使四边形是平行四边形,你认为下面四个条件中可选择的是()A. B. C. D.12.以下列各组数为边长,不能构成直角三角形的是()A.3,4,5 B.1,1,C.8,12,13 D.、、二、填空题(每题4分,共24分)13.若(x+2)(x﹣6)=x2+px+q,则p+q=_____.14.如图,中,平分,,,,,则__________.15.如图,在长方形ABCD的边AD上找一点P,使得点P到B、C两点的距离之和最短,则点P的位置应该在_____.16.若,,,则,,的大小关系用"连接为________.17.在“童心向党,阳光下成长”的合唱比赛中,30个参赛队的成绩被分为5组,第1~4组的频数分别为2,10,7,8,则第5组的频率为________.18.若代数式在实数范围内有意义,则x的取值范围是_______.三、解答题(共78分)19.(8分)如图,AD
为
△ABC
的角平分线,DE⊥AB
于点
E,DF⊥AC
于点
F,连接
EF
交
AD
于点
O.(1)求证:AD垂直平分EF;(2)若∠BAC=,写出DO与AD之间的数量关系,不需证明.20.(8分)某商店经销一种泰山旅游纪念品,4月份的营业额为2000元,为扩大销售量,5月份该商店对这种纪念品打9折销售,结果销售量增加20件,营业额增加700元.(1)求该种纪念品4月份的销售价格;(2)若4月份销售这种纪念品获利800元,5月份销售这种纪念品获利多少元?21.(8分)某体育用品商店一共购进20个篮球和排球,进价和售价如下表所示,全部销售完后共获得利润260元;篮球排球进价(元/个)8050售价(元/个)9560(1)列方程组求解:商店购进篮球和排球各多少个?(2)销售6个排球的利润与销售几个篮球的利润相等?22.(10分)如图,等腰直角三角形中,,,点坐标为,点坐标为,且,满足.(1)写出、两点坐标;(2)求点坐标;(3)如图,,为上一点,且,请写出线段的数量关系,并说明理由.23.(10分)某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.24.(10分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;
平均数(分)
中位数(分)
众数(分)
初中部
85
高中部
85
100
(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.25.(12分)某服装店到厂家选购A、B两种品牌的儿童服装,每套A品牌服装进价比B品牌服装每套进价多25元,已知用2000元购进A种服装的数量是用750元购进B种服装数量的2倍.(1)求A、B两种品牌服装每套进价分别为多少元?(2)若A品牌服装每套售价为130元,B品牌服装每套售价为95元,服装店老板决定,购进B品牌服装的数量比购进A品牌服装的数量的2倍还多4套,两种服装全部售出后,要使总利润不少于1200元,则最少购进A品牌的服装多少套?26.先化简,再取一个你喜欢的的值带入并求值
参考答案一、选择题(每题4分,共48分)1、B【解题分析】试题解析:∵,∴a=b,∴.故选B.考点:比例的性质.2、B【分析】由△ABC为等边三角形,可求出∠BDC=90°,由△DCE是等腰三角形求出∠CDE=∠CED=30°,即可求出∠BDE的度数.【题目详解】∵△ABC为等边三角形,BD为中线,∴∠BDC=90°,∠ACB=60°∴∠ACE=180°﹣∠ACB=180°﹣60°=120°,∵CE=CD,∴∠CDE=∠CED=30°,∴∠BDE=∠BDC+∠CDE=90°+30°=120°,故选:B.【题目点拨】本题主要考查了等边三角形的性质及等腰三角形的性质,解题的关键是熟记等边三角形的性质及等腰三角形的性质.3、C【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【题目详解】A、符合ASA定理,即根据ASA即可推出△ABD≌△ACD,故本选项错误;B、符合AAS定理,即根据AAS即可推出△ABD≌△ACD,故本选项错误;C、不符合全等三角形的判定定理,即不能推出△ABD≌△ACD,故本选项正确;D、符合SAS定理,即根据SAS即可推出△ABD≌△ACD,故本选项错误;故选:C.【题目点拨】本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.4、B【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】0.000075=7.5×10-5.故选B.【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5、C【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【题目详解】A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意.故答案为:C.【题目点拨】本题考查了轴对称图形,掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6、D【分析】如果一个图形沿着某条直线对折后两部分完全重合,这样的图形就是轴对称图形.【题目详解】解:按照轴对称图形的定义即可判断D是轴对称图形.故选择D.【题目点拨】本题考察轴对称图形的定义.7、D【解题分析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【题目详解】解:观察图象知:当时,,故选:D.【题目点拨】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度不大.8、C【分析】根据角平分线的作法排序即可得到答案.【题目详解】解:角平分线的作法是:在和上分别截取,,使,分别以为圆心,大于的长为半径作弧,在内,两弧交于,作射线,故其顺序为②③①.故选:C.【题目点拨】本题考查尺规作图-角平分线,掌握角平分线的作图依据是解题的关键.9、C【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴可得到轴对称图形,再根据对称轴的条数进行进一步筛选可得答案.【题目详解】解:根据轴对称图形的性质得出:线段,角,等腰三角形都是轴对称图形,故一共有3个轴对称图形.故选:C.【题目点拨】本题主要考查了轴对称图形,关键是找到图形的对称轴.10、C【分析】当C′落在AB上,点B与E重合时,AC'长度的值最小,根据勾股定理得到AB=5cm,由折叠的性质知,BC′=BC=3cm,于是得到结论.【题目详解】解:当C′落在AB上,点B与E重合时,AC'长度的值最小,
∵∠C=90°,AC=4cm,BC=3cm,
∴AB=5cm,
由折叠的性质知,BC′=BC=3cm,
∴AC′=AB-BC′=2cm.
故选:C.【题目点拨】本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠的性质是解题的关键.11、D【分析】把A、B、C、D四个选项分别作为添加条件进行验证,D为正确选项.添加D选项,即可证明△DEC≌△FEB,从而进一步证明DC=BF=AB,且DC∥AB.【题目详解】添加A、,无法得到AD∥BC或CD=BA,故错误;添加B、,无法得到CD∥BA或,故错误;添加C、,无法得到,故错误;添加D、∵,,,∴,,∴,∵,∴,∴四边形是平行四边形.故选D.【题目点拨】本题是一道探索性的试题,考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.12、C【分析】根据勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可作出判断.【题目详解】A.32+42=52,能构成直角三角形,故不符合题意;B.12+12=()2,能构成直角三角形,故不符合题意;C.82+122≠132,不能构成直角三角形,故符合题意;D.()2+()2=()2,能构成直角三角形,故不符合题意,故选C.【题目点拨】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.二、填空题(每题4分,共24分)13、-1【分析】已知等式左边利用多项式乘多项式法则计算,利用多项式相等的条件求出p与q的值,再代入计算即可求解.【题目详解】解:(x+2)(x﹣6)=x2﹣4x﹣12=x2+px+q,可得p=﹣4,q=﹣12,p+q=﹣4﹣12=﹣1.故答案为:﹣1.【题目点拨】本题考查了多项式与多项式的乘法运算,多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.14、【分析】根据题意延长CE交AB于K,由,平分,由等腰三角形的性质,三线合一得,利用角平分线性质定理,分对边的比等于邻边的比,结合外角平分性质和二倍角关系可得.【题目详解】如图,延长CE交AB于K,,平分,等腰三角形三线合一的判定得,,,,,,,,,,,故答案为:.【题目点拨】考查了三线合一判定等腰三角形,等腰三角形的性质,角平分线定理,外角的性质,以及二倍角的角度关系代换,熟记几何图形的性质,定理,判定是解题的关键.15、AD的中点【题目详解】分析:过AD作C点的对称点C′,根据轴对称的性质或线段垂直平分线的性质得出AC=PC′,从而根据两点之间线段最短,得出这时的P点使BP+PC的之最短.详解:如图,过AD作C点的对称点C′,根据轴对称的性质可得:PC=PC′,CD=C′D∵四边形ABCD是矩形∴AB=CD∴△ABP≌△DC′P∴AP=PD即P为AD的中点.故答案为P为AD的中点.点睛:本题考查了轴对称-最短路线问题,矩形的性质,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.16、【分析】根据零指数幂得出a的值,根据平方差公式运算得出b的值,根据积的乘方的逆应用得出c的值,再比较大小即可.【题目详解】解:∵,,∴.故答案为:.【题目点拨】本题考查了零指数幂,平方差公式的简便运算,积的乘方的逆应用,解题的关键是根据上述运算法则计算出a,b,c的值.17、0.1.【解题分析】直接利用频数÷总数=频率,进而得出答案.【题目详解】解:∵30个参赛队的成绩被分为5组,第1~4组的频数分别为2,10,7,8,∴第5组的频率为:(30-2-10-7-8))÷30=0.1.故答案为:0.1.【题目点拨】本题考查频数与频率,正确掌握频率求法是解题关键.18、【解题分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.解:∵在实数范围内有意义,∴x-1≥2,解得x≥1.故答案为x≥1.本题考查的是二次根式有意义的条件,即被开方数大于等于2.三、解答题(共78分)19、(1)见解析;(2)【解题分析】试题分析:(1)由AD为△ABC的角平分线,得到DE=DF,推出∠AEF和∠AFE相等,得到AE=AF,即可推出结论;(2)由已知推出∠EAD=30°,得到AD=2DE,在△DEO中,由∠DEO=30°推出DE=2DO,即可推出结论.试题解析:(1)∵AD为△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∠AED=∠AFD=90°,∴∠DEF=∠DFE,∴∠AEF=∠AFE,∴AE=AF,∴点A、D都在EF的垂直平分线上,∴AD垂直平分EF.(2),理由:∵∠BAC=60°,AD平分∠BAC,∴∠EAD=30°,∴AD=2DE,∠EDA=60°,∵AD⊥EF,∴∠EOD=90°,∴∠DEO=30°∴DE=2DO,∴AD=4DO,∴.【题目点拨】本题主要考查了角平分线的性质,线段垂直平分线的性质,含30°角的直角三角形的性质等知识点,解此题的关键是(1)证AE=AF和DE=DF;(2)证AD=2DE和DE=2DO.20、(1)50元;(2)900元.【解题分析】试题分析:(1)等量关系为:4月份营业数量=5月份营业数量﹣20;(2)算出4月份的数量,进而求得成本及每件的盈利,进而算出5月份的售价及每件的盈利,乘以5月份的数量即为5月份的获利.解:(1)设该种纪念品4月份的销售价格为x元.根据题意得,20x=1000解之得x=50,经检验x=50是原分式方程的解,且符合实际意义,∴该种纪念品4月份的销售价格是50元;(2)由(1)知4月份销售件数为(件),∴四月份每件盈利(元),5月份销售件数为40+20=60件,且每件售价为50×0.9=45(元),每件比4月份少盈利5元,为20﹣5=15(元),所以5月份销售这种纪念品获利60×15=900(元).考点:分式方程的应用.21、(1)购进篮球12个,购进排球8个;(2)销售6个排球的利润与销售4个篮球的利润相等.【分析】(1)设购进篮球x个,购进排球y个,根据一共购进20个篮球和排球,共获得利润260元列方程组,解方程组求出x、y的值即可得答案;(2)先求出6个排球的利润,再根据每个篮球的利润即可得答案.【题目详解】(1)设购进篮球x个,购进排球y个,由表格可得,销售一个篮球利润为15元,销售一个排球利润为10元,∵一共购进20个篮球和排球,共获得利润260元,∴,解得:.答:购进篮球12个,购进排球8个.(2)由表格可得,销售一个篮球利润为15元,销售一个排球利润为10元,∴销售6个排球的利润为:6×10=60元,∴60÷15=4(个),答:销售6个排球的利润与销售4个篮球的利润相等.【题目点拨】本题考查二元一次方程组得应用,正确得出题中的等量关系是解题关键.22、(1)点A的坐标为,点C的坐标为;(2)点B的坐标为(2,4);(3)MN=CN+AM,理由见解析【分析】(1)根据绝对值的非负性和平方的非负性即可求出a、b的值,从而求出、两点坐标;(2)过点A作AE∥y轴,过点B作BE⊥AE,作BD⊥x轴,设点B的坐标为(x,y),分别用x、y表示出CD、BE、AE的长,然后利用AAS证出△EBA≌△DBC,可得BE=BD,AE=CD,列出方程即可求出点B的坐标;(3)过点B作BF⊥BM,交AC的延长线与点F,连接MF,利用SAS证出△ABM≌△CBF,从而得到AM=CF,BM=BF,∠AMB=∠CFB,根据等边对等角可得∠BMF=∠BFM,然后证出∠FMN=∠MFN,再根据等角对等边可得MN=NF,即可得出结论.【题目详解】解:(1)∵∴∵∴解得:a=-2,b=2∴点A的坐标为,点C的坐标为;(2)过点A作AE∥y轴,过点B作BE⊥AE,作BD⊥x轴,如下图所示设点B的坐标为(x,y)∴BD=y,OD=x∴CD=4-x,BE=x-(-2)=x+2,AE=y-2∵BD⊥x轴∴BD∥y轴∴AE∥BD∴∠DBE=180°-∠AEB=90°∴∠EBA+∠ABD=90°∵等腰直角三角形中,,∴∠DBC+∠ABD=90°∴∠EBA=∠DBC在△EBA和△DBC中∴△EBA≌△DBC∴BE=BD,AE=CD即x+2=y,y-2=4-x解得:x=2,y=4∴点B的坐标为(2,4);(3)MN=CN+AM,理由如下过点B作BF⊥BM,交AC的延长线与点F,连接MF∴∠MBC+∠CBF=90°∵△ABC为等腰三角形∴BA=BC,∠BAC=∠BCA=45°,∠ABC=90°∴∠MBC+∠ABM=90°,∠BCF=180°-∠BCA=135°,∠BAM=∠MAC+∠BAC=135°∴∠ABM=∠CBF,∠BAM=∠BCF在△ABM和△CBF中∴△ABM≌△CBF∴AM=CF,BM=BF,∠AMB=∠CFB∴∠BMF=∠BFM,∵∴∠NMB=∠CFB∴∠BMF-∠NMB=∠BFM-∠CFB∴∠FMN=∠MFN∴MN=NF∵NF=CN+CF∴MN=CN+AM【题目点拨】此题考查的是非负性的应用、等腰直角三角形的性质、全等三角形的判定及性质和点的坐标与线段长度的关系,掌握绝对值和平方的非负性、等腰直角三角形的性质、构造全等三角形的方法和全等三角形的判定及性质是解决此题的关键.23、(1)设甲种书柜单价为180元,乙种书柜的单价为240元.(2)学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个方案二:甲种书柜9个,乙种书柜11个,方案三:甲种书柜10个,乙种书柜10个.【分析】(1)设甲种书柜单价为x元,乙种书柜的单价为y元,根据:若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元列出方程求解即可;(2)设甲种书柜购买m个,则乙种书柜购买(20-m)个.根据:所需经费=甲图书柜总费用+乙图书柜总费用、总经费W≤1820,且购买的甲种图书柜的数量≥乙种图书柜数量列出不等式组,解不等式组即可的不等式组的解集,从而确定方案.【题目详解】(1)解:设甲种书柜单价为x元,乙种书柜的单价为y元,由题意得:,解得:,答:设甲种书柜单价为180元,乙种书柜的单价为240元.(2)解:设甲种书柜购买m个,则乙种书柜购买(20-m)个;由题意得:解得:8≤m≤10因为m取整数,所以m可以取的值为:8,9,10即:学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个,方案二:甲种书柜9个,乙种书柜11个,方案三:甲种书柜10个,乙种书柜10个.【题目点拨】主要考查二元一次方程组、不等式组的综合应用能力,根据题意准确抓住相等关系或不等关系是解题的根本和关键.24、(1)
平均数(分)
中位数(分)
众数(分)
初中部
85
85
85
高
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乌当区某校高一上学期10月测试语文试题(含答案)
- 南昌三中教育集团九年级上学期第一次月考语文试题(含答案)
- 曲阜师范大学附属实验中学八年级上学期第一次单元测试语文试题(图片版无答案)
- 基于二零二四年度的无人机研发生产合同2篇
- 2024年度教育机构隔墙优化工程合同
- 《制动系统》课件2
- 2024年度股权激励合同激励条件与股权分配3篇
- 二零二四年度战略合作合同服务内容扩展
- 2024年度甲方提供房产交易信息服务与乙方合作合同2篇
- 6-2《插秧歌》说课稿及反思 2024-2025学年统编版高中语文必修上册
- 介绍辽宁锦州的PPT模板
- 水声通信组网技术第四讲水声网络多址接入
- 北京市医疗服务收费项目
- 园艺设施的环境特征及其调节控制课件
- 400输送式自动喷砂机使用说明书
- -年级综合实践活动《我与蔬菜交朋友》
- 出版社投稿邮箱汇总
- 血透室业务查房慢性肾脏病5期护理查房
- 做纸杯蛋糕 (教案)-五年级上册劳动浙教版
- 传统文化作文指导-课件
- 高中生成长记录家长反馈意见【三篇】
评论
0/150
提交评论