广东省云浮2024届八年级数学第一学期期末考试试题含解析_第1页
广东省云浮2024届八年级数学第一学期期末考试试题含解析_第2页
广东省云浮2024届八年级数学第一学期期末考试试题含解析_第3页
广东省云浮2024届八年级数学第一学期期末考试试题含解析_第4页
广东省云浮2024届八年级数学第一学期期末考试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省云浮2024届八年级数学第一学期期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,在平面直角坐标系中,点,,,和,,,分别在直线和轴上,,,,是以,,,为顶点的等腰直角三角形.如果点,那么点的纵坐标是()A. B. C. D.2.如图,将一张三角形纸片的一角折叠,使点落在处的处,折痕为.如果,,,那么下列式子中正确的是()A. B. C. D.3.某市为了处理污水需要铺设一条长为2000米的管道,实际施工时,×××××××,设原计划每天铺设管道米,则可列方程,根据此情景,题目中的“×××××××”表示所丢失的条件,这一条件为()A.每天比原计划多铺设10米,结果延期10天完成任务B.每天比原计划少铺设10米,结果延期10天完成任务C.每天比原计划少铺设10米,结果提前10天完成任务D.每天比原计划多铺设10米,结果提前10天完成任务4.如图,△ABC中,AB=5,AC=8,BD、CD分别平分∠ABC,∠ACB,过点D作直线平行于BC,分别交AB、AC于E、F,则△AEF的周长为()A.12 B.13 C.14 D.185.如图,是由7块颜色不同的正方形组成的长方形,已知中间小正方形的边长为1,这个长方形的面积为()A.45 B.48 C.63 D.646.下列函数中不经过第四象限的是()A.y=﹣x B.y=2x﹣1 C.y=﹣x﹣1 D.y=x+17.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A.6 B.5 C.4 D.38.已知直线y=-x+4与y=x+2如图所示,则方程组的解为()A. B. C. D.9.已知中,,求证:,运用反证法证明这个结论,第一步应先假设()成立A. B. C. D.10.如图,在中,点为的中点,平分,且于点,延长交于点.若,,则的长为()A.5 B.6 C.7 D.811.下列平面图形中,不是轴对称图形的是()A. B. C. D.12.用反证法证明“为正数”时,应先假设().A.为负数 B.为整数 C.为负数或零 D.为非负数二、填空题(每题4分,共24分)13.如图,在▱ABCD中,对角线AC与BD相交于点O,AC⊥CD,OE∥BC交CD于E,若OC=4,CE=3,则BC的长是____.14.如图,点B在点A的南偏西方向,点C在点A的南偏东方向,则的度数为______________.15.已知a+b=3,ab=1,则a2+b2=____________.16.在△ABC中,AB=AC,∠B=60°,则△ABC是_______三角形.17.一种微生物的半径是,用小数把表示出来是_______.18.若点M(a,﹣1)与点N(2,b)关于y轴对称,则a+b的值是_____三、解答题(共78分)19.(8分)某业主贷款6.6万元购进一台机器,生产某种产品.已知产品的成本是每个5元,售价是每个8元,应付的税款和其它费用是售价的10%.若每个月能生产、销售6000个产品,问至少几个月后能赚回这台机器的贷款?(用列不等式的方法解决)20.(8分)若点的坐标为,其中满足不等式组,求点所在的象限.21.(8分)已知点D为内部(包括边界但非A、B、C)上的一点.(1)若点D在边AC上,如图①,求证:AB+AC>BD+DC(2)若点D在内,如图②,求证:AB+AC>BD+DC(3)若点D在内,连结DA、DB、DC,如图③求证:(AB+BC+AC)<DA+DB+DC<AB+BC+AC22.(10分)如图,直线分别与x轴,y轴相交于A,B两点,0为坐标原点,A点的坐标为(4,0)(1)求k的值;(2)过线段AB上一点P(不与端点重合)作x轴,y轴的垂线,乖足分别为M,N.当长方形PMON的周长是10时,求点P的坐标.23.(10分)定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x=,y=,那么称点T是点A和B的融合点.例如:M(﹣1,8),N(4,﹣2),则点T(1,2)是点M和N的融合点.如图,已知点D(3,0),点E是直线y=x+2上任意一点,点T(x,y)是点D和E的融合点.(1)若点E的纵坐标是6,则点T的坐标为;(2)求点T(x,y)的纵坐标y与横坐标x的函数关系式:(3)若直线ET交x轴于点H,当△DTH为直角三角形时,求点E的坐标.24.(10分)如图所示,小刚想知道学校的旗杆有多高,他发现旗杆上的绳子垂到地面还多了1.8m,当他把绳子下端拉开4m后,发现下端刚好接触地面,小刚算了算就知道了旗杆的高度.你知道他是怎样算出来的吗?25.(12分)计算:.26.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若△ABC、△AMN周长分别为13cm和8cm.(1)求证:△MBE为等腰三角形;(2)线段BC的长.

参考答案一、选择题(每题4分,共48分)1、A【分析】设点A2,A3,A4…,A2019坐标,结合函数解析式,寻找纵坐标规律,进而解题.【题目详解】解:在直线,,,设,,,,,,,,,则有,,,,又△,△,△,,都是等腰直角三角形,,,,.将点坐标依次代入直线解析式得到:,,,,,又,,,,,,故选:A.【题目点拨】此题主要考查了一次函数点坐标特点,等腰直角三角形斜边上高等于斜边长一半,解题的关键是找出规律.2、A【题目详解】分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.详解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选A.点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.3、D【分析】工作时间=工作总量÷工作效率.那么表示原来的工作时间,那么就表示现在的工作时间,10就代表原计划比现在多的时间.【题目详解】解:原计划每天铺设管道米,那么就应该是实际每天比原计划多铺了10米,而用则表示用原计划的时间−实际用的时间=10天,那么就说明每天比原计划多铺设10米,结果提前10天完成任务.

故选:D.【题目点拨】本题主要考查的是分式方程的实际应用,要注意方程所表示的意思,结合题目给出的条件得出正确的判断.4、B【解题分析】试题分析:∵EF∥BC,∴∠EDB=∠DBC,∠FDC=∠DCB,∵△ABC中,∠ABC和∠ACB的平分线相交于点D,∴∠EBD=∠DBC,∠FCD=∠DCB,∴∠EDB=∠EBD,∠FDC=∠FCD,∴ED=EB,FD=FC,∵AB=5,AC=8,∴△AEF的周长为:AE+EF+AF=AE+ED+FD+AF=AE+EB+FC+AF=AB+AC=5+8=3.故选B.考点:3.等腰三角形的判定与性质;3.平行线的性质.5、C【分析】由中央小正方形的边长为1厘米,设这7个正方形中最大的一个边长为x厘米,其余几个边长分别是x-1、x-2、x-3,根据长方形中几个正方形的排列情况,列方程求出最大正方形的边长,从而求得长方形长和宽,进而求出长方形的面积.【题目详解】因为小正方形边长为1厘米,设这7个正方形中最大的一个边长为x厘米,因为图中最小正方形边长是1厘米,所以其余的正方形边长分别为x−1,x−2,x−3,3(x-3)-1=x解得:x=5;所以长方形的长为x+x−1=5+5-1=9,宽为x-1+x−2=5-1+5-2=7长方形的面积为9×7=63(平方厘米);故选:C【题目点拨】本题考查了对拼组图形面积的计算能力,利用了正方向的性质和长方形面积的计算公式.6、D【解题分析】试题解析:A.,图象经过第二、四象限.B.,图象经过第一、三、四象限.C.,图象经过第二、三、四象限.D.,图象经过第一、二、三象限.故选D.7、C【分析】由∠ABC=15°,AD是高,得出BD=AD后,证△ADC≌△BDH后,得到BH=AC,即可求解.【题目详解】∵∠ABC=15°,AD⊥BC,∴AD=BD,∠ADC=∠BDH,∵∠AHE+∠DAC=90°,∠DAC+∠C=90°,∴∠AHE=∠BHD=∠C,在△ADC与△BDH中,∴△ADC≌△BDH∴BH=AC=1.故选C.【题目点拨】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.由∠ABC=15°,AD是高,得出BD=AD是正确解答本题的关键.8、B【解题分析】二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即两条直线y=-x+4与y=x+2的交点坐标.故选B点睛:本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.9、A【分析】根据反证法的步骤,第一步要从结论的反面出发假设结论,即可判断.【题目详解】解:的反面为故选A.【题目点拨】此题考查的是反证法的步骤,掌握反证法的第一步为假设结论不成立,并找到结论的反面是解决此题的关键.10、B【分析】根据平分,且可得△ADB≌△ADN,得到BD=DN,AN=AB=4,根据三角形中位线定理求出NC,计算即可.【题目详解】解:∵平分,且∴,在△ADB和△ADN中,∴△ADB≌△ADN(ASA)

∴BD=DN,AN=AB=4,

∵点为的中点,

∴NC=2DM=2,

∴AC=AN+NC=6,

故选B.【题目点拨】本题考查的是三角形中位线定理、全等三角形的判定和性质,三角形的中位线平行于第三边,且等于第三边的一半.11、A【解题分析】试题分析:根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.故选A.考点:轴对称图形.12、C【分析】根据反证法的性质分析,即可得到答案.【题目详解】用反证法证明“为正数”时,应先假设为负数或零故选:C.【题目点拨】本题考查了反证法的知识,解题的关键是熟练掌握反证法的性质,从而完成求解.二、填空题(每题4分,共24分)13、1.【分析】首先利用三角形的中位线定理求得CD的长,然后利用勾股定理求得AD的长,即可求出BC的长.【题目详解】解:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC.∵OE∥BC,∴OE∥AD,∴OE是△ACD的中位线.∵CE=3cm,∴DC=2OE=2×3=2.∵CO=4,∴AC=3.∵AC⊥CD,∴AD1,∴BC=AD=1.故答案为:1.【题目点拨】考查了平行四边形的性质,三角形中位线定理,勾股定理,正确的理解平行四边形的性质是解答本题的关键,难度不大.14、;【分析】根据方位角的定义以及点的位置,即可求出的度数.【题目详解】解:∵点B在点A的南偏西方向,点C在点A的南偏东方向,∴;故答案为:75°.【题目点拨】本题考查了解直角三角形的应用——方向角问题,会识别方向角是解题的关键.15、7【解题分析】试题解析:故答案为7.16、等边【分析】由于AB=AC,∠B=60°,根据有一个角为60°的等腰三角形为等边三角形,判断得出△ABC为等边三角形即可解决问题.【题目详解】∵AB=AC,∠A=60°,∴△ABC为等边三角形,故答案是:等边.【题目点拨】本题考查了等边三角形的判定与性质:有一个60°的等腰三角形为等边三角形;三个角都相等,每一个角等于60°.17、0.1【分析】绝对值小于1的数可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】6×10-6m=0.1m.故答案为:0.1.【题目点拨】本题考查了负整数指数科学记数法,对于一个绝对值小于1的非0小数,用科学记数法写成的形式,其中,n是正整数,n等于原数中第一个非0数字前面所有0的个数(包括小数点前面的0).18、-1【解题分析】试题解析:∵点M(a,﹣1)与点N(2,b)关于y轴对称,∴a=﹣2,b=﹣1,∴a+b=(﹣2)+(﹣1)=﹣1.故答案为﹣1.三、解答题(共78分)19、至少5个月后该业主能赚回这台机器的贷款.【分析】设需要个月能赚回这台机器的贷款,根据题意列出不等式求解即可.【题目详解】解:设需要个月能赚回这台机器的贷款,根据题意,得,解得:,答:至少5个月后该业主能赚回这台机器的贷款.【题目点拨】本题是对不等式知识的考查,准确根据题意列出不等式是解决本题的关键.20、点在第四象限【分析】先求出不等式组的解集,进而求得P点的坐标,即可求得点P所在的象限.【题目详解】,解①得:x≥4,解②得:x≤4,则不等式组的解是:x=4,∵=1,2x-9=-1,∴点P的坐标为(1,-1),∴点P在的第四象限.【题目点拨】本题主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).21、(1)见解析;(2)见解析;(3)见解析【分析】(1)根据三角形的三边关系和不等式的基本性质即可得出结论;(2)延长BD交AC于E,根据三角形的三边关系和不等式的基本性质即可得出结论;(3)根据三角形的三边关系和不等式的基本性质即可得出结论.【题目详解】解:(1)∵AB+AD>BD∴AB+AD+DC>BD+DC∴AB+AC>BD+DC(2)延长BD交AC于E∵AB+AE>BD+DE①DE+EC>DC②∴由①+②,得AB+AE+DE+EC>BD+DE+DC整理,得AB+AC>BD+DC(3)∵AD+BD>AB①BD+DC>BC②AD+DC>AC③∴把①+②+③得AD+BD+BD+DC+AD+DC>AB+BC+AC整理,得AD+DB+DC>(AB+BC+AC)又∵由上面(2)式得到:DB+DA<AC+BC①DB+DC<AB+AC②DA+DC<AB+BC③∴把①+②+③得DB+DA+DB+DC+DA+DC<AC+BC+AB+AC+AB+BC整理得DA+DB+DC<AB+BC+AC∴(AB+BC+AC)<DA+DB+DC<AB+BC+AC【题目点拨】此题考查的是比较线段的和之间的大小关系,掌握三角形的三边关系和不等式的基本性质是解决此题的关键.22、(1)k=﹣2;(2)点P的坐标为(3,2).【解题分析】试题分析:(1)因为直线分别与轴,轴相交于两点,O为坐标原点,A点的坐标为即直线经过所以解之即可;

(2)因为四边形是矩形,点P在直线上,设则而由此即可得到关于的方程,解方程即可求得.试题解析:(1)∵直线y=kx+8经过A(4,0),∴0=4k+8,∴k=−2.(2)∵点P在直线y=−2x+8上,设P(t,−2t+8),∴PN=t,PM=−2t+8,∵四边形PNOM是矩形,解得∴点P的坐标为23、(1)(,2);(2)y=x﹣;(3)E的坐标为(,)或(6,8)【分析】(1)把点E的纵坐标代入直线解析式,求出横坐标,得到点E的坐标,根据融合点的定义求求解即可;

(2)设点E的坐标为(a,a+2),根据融合点的定义用a表示出x、y,整理得到答案;

(3)分∠THD=90°、∠TDH=90°、∠DTH=90°三种情况,根据融合点的定义解答.【题目详解】解:(1)∵点E是直线y=x+2上一点,点E的纵坐标是6,∴x+2=6,解得,x=4,∴点E的坐标是(4,6),∵点T(x,y)是点D和E的融合点,∴x==,y==2,∴点T的坐标为(,2),故答案为:(,2);(2)设点E的坐标为(a,a+2),∵点T(x,y)是点D和E的融合点,∴x=,y=,解得,a=3x﹣3,a=3y﹣2,∴3x﹣3=3y﹣2,整理得,y=x﹣;(3)设点E的坐标为(a,a+2),则点T的坐标为(,),当∠THD=90°时,点E与点T的横坐标相

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论